
AFRL-VA-WP-TR-2005-3048

STRATEGIES FOR HUMAN-
AUTOMATON RESOURCE ENTITY
DEPLOYMENT (SHARED)

Dr. Jose B. Cruz, Jr.
Department of Electrical and Computer Engineering
The Ohio State University
752 Dreese Laboratories
2015 Neil Avenue
Columbus, OH 43210-1272

Air Force Institute of Technology
Iterativity, Inc.
University of Cincinnati
University of Pittsburgh

DECEMBER 2003

Final Report for 11 September 2001 – 31 December 2003

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

AIR VEHICLES DIRECTORATE
AIR FORCE MATERIEL COMMAND
AIR FORCE RESEARCH LABORATORY
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542

NOTICE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site
Public Affairs Office (AFRL/WS) and is releasable to the National Technical Information Service
(NTIS). It will be available to the general public, including foreign nationals.

THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION.

/s/ /s/
__ ___
MARK J. MEARS DEBORAH S. GRISMER
Program Engineer Chief, Control Design and Analysis Branch
Control Design and Analysis Branch Air Force Research Laboratory

/s/
__
BRIAN W. VAN VLIET, Chief
Control Sciences Division
Air Vehicles Directorate

This report is published in the interest of scientific and technical information exchange and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

i

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)

December 2003 Final 09/11/2001 – 12/31/2003
5a. CONTRACT NUMBER

F33615-01-C-3151
5b. GRANT NUMBER

4. TITLE AND SUBTITLE

STRATEGIES FOR HUMAN-AUTOMATON RESOURCE ENTITY
DEPLOYMENT (SHARED)

5c. PROGRAM ELEMENT NUMBER
0602301

5d. PROJECT NUMBER

A055
5e. TASK NUMBER

6. AUTHOR(S)

Dr. Jose B. Cruz, Jr.

5f. WORK UNIT NUMBER

 0C
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

 REPORT NUMBER
Department of Electrical and Computer Engineering
The Ohio State University
752 Dreese Laboratories
2015 Neil Avenue
Columbus, OH 43210-1272

Air Force Institute of Technology
Iterativity, Inc.
University of Cincinnati
University of Pittsburgh

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY ACRONYM(S)

AFRL/VACA Air Vehicles Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7542

DARPA/IXO
11. SPONSORING/MONITORING

AGENCY REPORT NUMBER(S)
 AFRL-VA-WP-TR-2005-3048

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
Report contains color.

14. ABSTRACT

This report documents work done with DARPA funding, under contract F33615-01-C-3151 for the period of performance
of September 2001 through December 2003. The main goal of the SHARED project is to develop a methodology for
hierarchical control, including theory, algorithms, and experimentations. The goal also is to demonstrate the methodology
in a prototype tool for optimal planning of shared responsibilities and roles in the hierarchical deployment and operation
of teams of distributed cooperative automaton entities and human operators in future combat systems, in adversarial and
uncertain situations. The underlying theme of the SHARED project is the use a hierarchical game theoretic framework,
where entities at different levels use leader-follower games, peer entities at the same level use principles of cooperative
games, robustness and estimation theory are blended, and total system design is human-centered.

15. SUBJECT TERMS
Cooperative Control, Task Planning, Uncertainty, Path Planning, UAVs

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER OF
PAGES

 112
 Mark J. Mears
19b. TELEPHONE NUMBER (Include Area Code)

(937) 255-8685

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

 iii

Table of Contents
1 Introduction... 1

1.1 TCT Summary .. 1

1.2 TDT Summary .. 2

1.3 CPP Summary... 4

1.4 VIA Summary... 4

1.5 SHARED Scenario of Use .. 5

2 Research Goals and Objectives... 8

2.1 TCT Goals... 8

2.2 TDT Goals .. 8

2.2.1 TDT-Hierarchical Goals ... 8

2.2.2 TDT-ULTRA Goals.. 11

2.3 CPP Goals ... 14

2.4 VIA Goals ... 14

3 Progress Against SOW ... 18

3.1 TCT Development .. 18

3.2 TDT-Hierarchical Development ... 18

3.3 TDT-ULTRA Development.. 19

3.4 CPPP Development... 20

3.5 CPPS Development... 21

3.6 Architecture and VIA Development ... 22

4 Accomplishments and Achievements ... 28

4.1 TCT Accomplishments ... 28

4.1.1 Basic Assumptions:... 29

4.1.2 Utilizing an Interactive Rule Base .. 32

4.1.3 Probabilistic Resource Allocation... 34

4.1.4 Evaluating Adversarial Resource Allocation.. 35

4.2 TDT-Hierarchical Accomplishments.. 36

4.2.1 P-Controllers ... 36

 iv

4.2.2 TDT Multi-Level Architecture ... 36

4.2.3 AI-Based Task Assignment .. 40

4.2.4 Extended Bidirectional Associative Memory ... 40

4.2.5 Cooperative Jamming Strategy ... 41

4.2.6 Cooperative Decoy Deployment... 43

4.2.7 Experiments and Simulation Result of TDT-Hierarchical.................................... 44

4.3 TDT-ULTRA Accomplishments: ... 45

4.4 CPPP Accomplishments ... 61

4.4.1 Accomplishments on Theory .. 61

4.4.2 Accomplishments on Implementation/Simulation.. 61

4.5 CPPS Accomplishments ... 65

4.6 SHARED System and VIA Accomplishments ... 70

4.6.1 Domain Model Detailed System Design... 73

4.6.2 Interaction Model Detailed System Design .. 88

4.6.3 Presentation Model Detailed System Design.. 93

5 Research Required .. 94

5.1 TCT Research Required.. 94

5.2 TDT Research Required ... 94

5.2.1 TDT-Hierarchical.. 94

5.2.2 TDT-ULTRA .. 94

5.3 CPP Research Required .. 95

5.3.1 CPPP ... 95

5.3.2 CPPS ... 95

5.4 VIA Research Required .. 96

6 References and Standards ... 97

7 Publications... 98

7.1 TCT Publications .. 98

7.2 OSU TDT Publications ... 98

7.3 Pittsburgh TDT Publications... 98

7.4 CPPP Publications .. 99

7.5 CPPS Publications .. 100

 v

7.6 VIA Publications... 100

SHARED Final Report

 vi

List of Figures

Figure 1.1 An Example of Operation Interface .. 6

Figure 4.1 Position of TCT module in SHARED... 28

Figure 4.2 Examples of Task Decomposition... 28

Figure 4.3 Experiment on Changing Target Distribution ... 35

Figure 4.4 Experiment on Changing Assessment of Red Intentions .. 35

Figure 4.5 TDT Multi-level Architecture ... 37

Figure 4.6 Diagram for Computing Lower-Level Controller ... 39

Figure 4.7 Flowchart for Cooperative Jamming Strategy... 42

Figure 4.8 Simulation Result of TDT-Hierarchical Algorithm .. 44

Figure 4.9 Effect of Priority of Collateral Damage on Battle Outcomes...................................... 45

Figure 4.10 The target Assignment Problem .. 46

Figure 4.11 Flow chart of the ULTRA algorithm... 47

Figure 4.12 Computational Requirements of ULTRA vs. Exhaustive Search 51

Figure 4.13 Block Diagram of ULTRA Open-loop Controller .. 51

Figure 4.14 Block Diagram of ULTRA Feedback Controller .. 52

Figure 4.15 Scenario Battlefield ... 52

Figure 4.16 Outcome with the Open-loop Controller (left). Outcome with the Feedback
Controller (right)... 56

Figure 4.17 Worth of Red Force deployed in Red Area 2 .. 57

Figure 4.18 Worth of Blue Force Assigned to Red Area 2... 58

Figure 4.19 Net Performance for Blue Force.. 58

Figure 4.20 Comparison of cooperation against Non-cooperation... 62

Figure 4.21 3D Path Planning with Different Implementations Typical terrain tracking simulation
results from OEP Dynamic Model (upper) and Automata Model (lower). Desired altitude:
400m AGL .. 62

Figure 4.22 Algorithm for Handling Flight Dynamics ... 63

Figure 4.23 Algorithm for Dynamically Adjusting Threat Effects... 64

Figure 4.24 System integration diagram... 64

Figure 4.25 A Cross Section of a SAM Threat Radius... 66

Figure 4.26 5 Decisions of a UAV at Each Time Step: Turn Left or Right, Ascend, Descend, or
Go Straight. ... 67

SHARED Final Report

 vii

Figure 4.27 A Depiction of How Vehicles Predict Where Another Will Be. (The shaded regions
represent a positive probability that another vehicle will be in the area.) 68

Figure 4.28 The Modular Architecture of CPPS .. 68

Figure 4.29 A Trial from Using CPPS in an In-house Test Bed... 69

Figure 4.30 A Trial from Using CPPS as Part of the SHARED Test Bed 70

Figure 4.31 Basic Use Case for the SHARED System... 71

Figure 4.32 High Level Sequence of Operations of the SHARED Software 71

Figure 4.33 Architecture of the SHARED System ... 72

Figure 4.34 Schema for the Domain Model.. 74

Figure 4.35 An Example of Operation Situation .. 76

Figure 4.36 An Example of the Composition of a Task Situation.. 79

Figure 4.37 Expansion of the Mission Situation for SEAD.. 80

Figure 4.38 Details of a Defensive Process Model... 81

Figure 4.39 Interactions between the Roles and the Domain and Interactions Systems 87

Figure 4.40 Diagram for Interaction Model.. 89

Figure 4.41 Examples of Relationships in the Situation Representation..................................... 90

Figure 4.42 The Classes in the Interaction Model .. 91

Figure 4.43 General Flow of the Interaction Design Process ... 91

Figure 4.44 An Example Portion of an Interaction Design .. 92

SHARED Final Report

 viii

List of Tables

Table 4.1 Dimensionality of the Target Assignment Game Matrix.. 46

Table 4.2 Red Force in Red Area 2... 54

Table 4.3 Blue Team 1 assigned to Red Area 2.. 54

Table 4.4 ULTRA Open-Loop Target Assignments... 55

Table 4.5 ULTRA Feedback Target Assignments.. 56

Table 4.6 Partial Outcome of the Battle in Red area 2 ... 57

Table 4.7 Percentage of Total Worth Remaining on Each Side at the End of Battle with [p,q] =
[0, 1].. 60

Table 4.8 Percentage of Total Worth Remaining on Each Side at the End of Battle with [p,q] =
[0, 0.5]... 60

Table 4.9 Information Acquired from the Simulator .. 75

Table 4.10 Documented Equipment Systems ... 78

Table 4.11Summary of Capabilities of Each Actor Object .. 82

Table 4.12 Preferred Type of Actor Tracked of Each Activity .. 83

Table 4.13 Description of each Military Activity... 85

SHARED Final Report

 1

1 Introduction

The main goal of the SHARED project is to develop a methodology for hierarchical control,
including theory, algorithms, and experimentations. The goal also is to demonstrate the
methodology in a prototype tool for optimal planning of shared responsibilities and roles in the
hierarchical deployment and operation of teams of distributed cooperative automaton entities and
human operators in future combat systems, in adversarial and uncertain situations.

The underlying theme of the SHARED project is the use a hierarchical game theoretic
framework, where entities at different levels use leader-follower games, peer entities at the same
level use principles of cooperative games, robustness and estimation theory are blended, and
total system design is human-centered. The investigation at all levels of the functional hierarchy
will explicitly consider presence of intelligent adversary using non-cooperative game theory.

In this section we briefly summarize the main modules of the SHARED software system, the
TCT (Team Composition and Tasking), TDT (Team Dynamics and Tactics), CPP (Cooperative
Path Planning) and VIA (Variable Initiative Automation). A short scenario of use for the
SHARED system completes this section.

1.1 TCT Summary

The main purpose of TCT is to develop and provide an algorithm to schedule tasks at the mission
level and allocate resources associated to these tasks. In order to accomplish this, a number of
innovative developments were undertaken: first, a rule base is developed to help task prioritizing
based on Rules of Engagements. Second, several parameters are introduced for a probabilistic
framework for timing and resource calculation. Third, several criteria are considered in order to
allocate the heterogeneous resources. TCT is within a large feedback loop where it is called if
major discrepancies in expectations occurs or stages terminate.

The major accomplishments of TCT include:

 Architecture of TCT was developed to perform task decomposition in the SHARED
system.

 TCT provides an algorithm of non-homogenous resource allocation based on the
following variables:

o Number of targets.

o Air defensibility of targets.

o Target status, classified as potential, known, unknown.

o Information ability of targets, like communication capability.

 TCT schedules the tasks using the following:

o Classify all tasks into several task types.

o Group all targets into several areas.

o Generate stages based on task types and tasks.

SHARED Final Report

 2

o Provide several equations to estimate the duration for each stage.

o Develop a rule based from the information in hand to help schedule the whole
process.

 The above resource allocation algorithm, task scheduling and time estimation are
integrated into a self-defined function in SHARED system, called the TCT agent. The
TCT agent works to

o Generate task duration, including ending moments, based on all the current input
task information

o Allocate available UAVs into each task associated with the first stage.

o Estimate the loss in both sides by a probability inner model of the battle, which is
built by the information provided by the input data to the TCT agent.

o Allocate all estimated available UAVs into each tasks associated with the future
stages, in order to give a whole view to the commander.

o Output all results, like stage information, the ending time and associated UAVs,
ready to be presented to the human commander.

 TCT also provides a pre-run simulator to estimate probabilistic outcomes (not integrated
into system yet)

1.2 TDT Summary

The main purpose of TDT is to develop an effective target assignment algorithm and an optimal
salvo size algorithm to destroy the opposing force combat capabilities. Furthermore, the TDT
mission plan will find an optimal deployment of decoys, jamming and avoid collateral damage.
There are two subparts: TDT Hierarchical and TDT ULTRA.

The major accomplishments of TDT Hierarchical are as follows:

 A non-zero-sum non-cooperative game theoretical algorithm has been developed to
determine the optimal salvo size to achieve the minimum remaining platforms of red and
the maximum remaining platforms of blue at the end of a battle.

 A Game Based hierarchical TDT architecture has been developed. This was
accomplished by the innovative integration of heuristic based upper level planning
(multi-stage UAV-target assignment) and event based lower level game, which considers
the collateral damage effect.

 A Cooperative Jamming Strategy has been developed to make use of the network-Centric
paradigm by exploiting multiple platforms to gain geometric, physical and tactical
advantage.

 A Cooperative Decoy Deployment method has been developed to maximize the total
probability of survival of Blue UAVs.

 A software environment has been developed to test TDT is a simplified simulator which
includes the AID, TCT, CPP and TDT. It can do multi-team & multi-mission tests.

SHARED Final Report

 3

 Full integration of TDT with AID and other modules of the SHARED project, and
connectivity to software simulations and hardware demonstrations provided by the OEP.

The major accomplishments of TDT ULTRA are as follows:

 The TDT ULTRA starts with an assignment obtained from the TCT level for a team of
Blue UAV to be engaged in battle against a team of Red Units (SAM sites, troops, etc.).
The basic premise of the TDT ULTRA is that if each Blue UAV is left to select its own
Red targets based on its own information and with no coordination with other UAVs,
then the result will be that each UAV will select the easiest and most visible Red target.
That is, most UAVs will end up targeting the same Red unit and consequently many Red
units will be missed. Thus the focus of the TDT ULTRA is to coordinate the Blue Team
Target Selection Strategy (TSS) so as to maximize the collective Blue team damage
against the Red units.

 The TDT ULTRA assumes that the Red units are also optimizing and coordinating their
targeting strategy against the Blue units and as a result determines the target selection
strategy based on a game theoretic approach. The TDT ULTRA uses the Nash solution as
the basis for determining the Blue team’s target selection strategy.

 At the same time, the TDT ULTRA determines an “estimate” of the Red team’s target
selection strategy.

 The TDT ULTRA addresses the major issue of scalability that is often viewed as a
drawback to the use of a game theoretic approach in target selection. This issue arises
when the opposing teams consist of non-homogeneous units and hence a unit-on-unit
target selection strategy has to be determined.

 An efficient search method to determine the Non-Cooperative Nash Team Target
Selection Strategy based on a Unit Level Team Resource Allocation search (ULTRA) has
been developed to deal with this issue.

 The ULTRA algorithm was tested for parameter sensitivity and robustness on numerous
test examples and scenarios either developed at PITT or based on the Boeing challenge
problems.

 A fast real-time implementation of an ULTRA-based TDT controller in feedback form
was developed.

 The performance of ULTRA with and without feedback from the Boeing OEP was
compared.

 A Monte Carlo simulation approach was used to determine lower and upper bounds on
ULTRA’s performance.

 The concept of Distance Discount Factor (DDF) was introduced to address the issue that
close but less significant targets could be more important than more significant but far
targets.

 The TDT ULTRA based on ULTRA was fully integrated into the SHARED system. It
includes the following features: (a) Sensor scheduling (Find, Identify, and BDA), (b)
Multiple types of weapons per UAV, (c) Movement, position, and firing range, (d) Non-

SHARED Final Report

 4

uniform planning horizons, (e) Jamming and use of decoys, (f) Non Combat (Sensor)
UAVs, (g) Adherence to R.O.E., and (h) Long term planning.

 Finally, the Nash target selection strategy used in ULTRA was compared to naïve target
selection strategies such as a random selection strategy and a unit greedy selection
strategy. The results show that there is considerable advantage to using the Nash strategy.

1.3 CPP Summary

The main purpose of CPP is to develop a set of algorithms such that UAVs in a given scenario
could cooperatively find a desired path to reach certain destinations and search a bounded area to
increase certainty in the area. The CPP module is decomposed into two sub-modules: CPP-
PointToPoint (CPPP) and CPP-Search (CPPS).

CPPP specifies way-points for UAVs to reach certain destinations while meeting certain
requirements, including minimizing en route dangers, meeting time constraints, keeping mutual
spacing, and decreasing fuel consumption, etc.

The major accomplishments of CPPP include:

 A biological perspective is adopted on UAV groups and foraging theory is applied in
cooperative path planning. The cohesion properties of the UAV groups are studied in a
stability-theoretic framework.

 Different dynamic models for UAVs are constructed and different implementations are
compared for purpose of evaluation.

 Three dimensional path planning algorithm is developed and its capability is enhanced
with a heuristic approach. The impacts of uncertainty and limited UAV sensing capability
on the path planning are also investigated.

 All algorithms are implemented in OEP testbed and theoretical results are verified. Full
system integration is accomplished.

Cooperative Path Planning: Search is concerned with directing the paths of UAV’s such that
uncertainty about the environment is reduced and new targets are discovered while previously
discovered targets are classified. This is a key problem to solve in the presence of uncertainty.

The major accomplishments of CPPS are:

 Formulation of a stochastic decision-making algorithm to produce paths for the CPP
Search problem.

 Model of targets and threats in a 3-D environment

 Development of cooperative methods to allow for decentralized planning

 Integration of approach with rest of SHARED

1.4 VIA Summary

The object of the Variable Initiative Automation (VIA) portion of the SHARED project was to
apply automated interaction design (AID) technology to military command and control domains,

SHARED Final Report

 5

particularly automated planning environments, with the basic goal of meeting the human
interaction requirements for control of multiple groups of unmanned air vehicles performing
SEAD missions. In addition, this portion of the project was responsible for the overall system
architecture, module integration, and software development.

Research goals emphasize the use of design automation technology to prove the concept of user
interface creation by software agents, based on user needs and capabilities and reflecting the
dynamically changing status of the situation.

Application goals emphasize the development and implementation of the SHARED software
and the demonstration of advanced automated reasoning, planning, and design in a hardware
context.

High level VIA project accomplishments included:

• Research and development leading to an AID system that provides consistent and useful
situated interactions between a commander and a squad of unmanned aerial vehicles,
supporting the full range of mixed-initiative control required.

• Design and implementation of the SHARED software application as a set of software
agents, based on advanced automated reasoning capabilities and compositional
knowledge representation structures.

• Full integration of specialized planners developed in other portions of the SHARED
project, and connectivity to software simulations and hardware demonstrations provided
by the OEP.

1.5 SHARED Scenario of Use

The commander is assigned a squad of UAVs and an area of operations. When SHARED is
initially started, IPB is collected from the simulator and a situation model is built from that
information by extending the semantics of the entities in the situation and interconnecting them
through hierarchical and relational information.

Each object in the situation model is responsible for interacting as necessary with other objects.
For example, when the object representing the squad of UAVs has an unfilled plan, and so looks
for associated agents who can perform the task planning activity it requires. If it has an
associated TCT Agent that is capable of team formation, it calls that TCT to request a plan. If
there isn’t a TCT, it assigns its planning activity to the human and sends the planning request
through the UI. In the same way, once they are created, teams need to be planned, and so call a
TDT agent. The result is a default plan on the situation. Once the situation is fully formed and
planners have been called, the human need for interaction with the situation causes the UI to be
presented to the commander (including interactions for activities that haven’t been performed
because the automation may not be available). An example screen shot is shown below.

SHARED Final Report

 6

Figure 1.1 An Example of Operation Interface

If the commander is satisfied with automated planning, and has no modifications to ROE or
guidance to express, he may select to approve (start) the battle, and the fully automated battle
progresses. Default settings cause the squad to call the TCT every time the number of threats
changes by 10%. Teams call their TDT automatically every time there is a change in the
numbers of threats or assets, or if a time trigger of 3 minutes has been reached. Each UAV that is
performing a Fly action calls the appropriate CPP (point-to-point or search).

The description above illustrates SHARED support of a fully automated scenario, where the
human has minimal interaction and control requirements. The software, however, is intended to
provide for the full range of variable initiative behavior from all agents. Each of the human’s
capabilities, whether or not it is provided by automation, is accessible through the user interface
to the system, and the human may take action at any level to collaborate and share
responsibilities with each of the available automated entities, or, if necessary, override the
automation completely. Although the current version of SHARED does not provide for real-time
manual flight control (the lowest level in our control hierarchy), it does provide for variable and
mixed-initiative control of all of the higher levels of the system by humans at all times.

The commander shares command responsibilities with the automated agents through his
modification of the default situation interpretation and rules of engagement, or through the
expression of suspicions or constraints that are not known to the system. Both before the battle
and during the course of the battle, the commander may select different situation objects and

SHARED Final Report

 7

modify parameters that change will affect the actions of the planners. For example, at the team
level of detail, the commander may change the high-level identification certainty required for
attack, or express ideas about enemy intent. At the level of each enemy area, the commander can
change the objectives for that area (SEAD, Interdiction, Close Air Support). For each enemy
system, the Rules of Engagement (TCT [time critical target], Kill Zone [only attack in kill zone],
Hostilities [only if attacked], or No Strike) may be changed, and suspected objects can be added
and placed in their most likely location on the battlefield. In addition, the measure of merit may
be set individually for each enemy system. Friendly areas are protected by default, but the
commander can change that setting to exclude blue protection for any zone.

In addition to control over the planning parameters at various levels, the commander may invoke
planning manually, and has full control over the parameters under which automated re-planning
will take place. Both the TCT and the individual TDT planners may be set to re-plan after a
specified elapsed time or based on a specified level of change to assets or targets. Throughout the
planning and battle stages, the commander is presented with displays that allow him full
situational awareness of the evolving situation together with the ability to take action at any level
of granularity, as necessary.

SHARED Final Report

 8

2 Research Goals and Objectives
2.1 TCT Goals

The research goals/objectives of TCT are to provide a hierarchical system tool for human
commander to plan the whole mission. A sequence of tasks associated with the length of time
should be provided by TCT module. Given a set of heterogeneous resources, the team for each
task needs to be formed. TCT module also needs to communicate/interact with other modules
and human in the system. A simulation capability to evaluate outcomes was also developed.

2.2 TDT Goals

Two research groups, one at OSU and one at Pittsburgh, developed TDT approaches.

2.2.1 TDT-Hierarchical Goals

Milestone Objective/Goal Deliverables Evaluation
Criteria

Measures

Feasibility
demo and
detailed plan

End of
February,
2002

1. Justification of
possible technical
approaches

2. Description
and justification
of any deviations
from SOW3.
Requirements
understanding

4. Detailed task
plan

1. Proposal of
cooperative control
of teams using
Pareto-optimality
concepts.

2. Proposal of
cooperative teams
operating in the
presence of an
adversary.

3. Proposal of
representing
adversarial impact
by non-zero-sum
non-cooperative
game theory.

1. Feasibility of
proposed
algorithms in
solving tasks of
Team Dynamics
and Tactics: are
these proper
algorithms?

1. Positive evaluation
of proposed
algorithms.

2. Detailed plan for
next 6 months.

SHARED Final Report

 9

Milestone Objective/Goal Deliverables Evaluation
Criteria

Measures

P-controller
Design and
Preliminary
Integration

End of
September,
2002

1. Implement
non-cooperative
static Nash
games and mixed
strategies to
optimize salvo
size.

2. Integration in
the overall
SHARED
domain model.

1. A new theory for
the control of teams
of cooperating
entities in the
presence of
intelligent
adversaries using a
game theory
framework involving
non-cooperative
static Nash games
and mixed strategies,
together with
feedback control
principles, using
nonlinear dynamic
models.

2. A simplified
integration within
the MICA functional
hierarchy.

3. A theory
implemented on
Boeing OEP.

4. Scalability
analysis.

5. A new method for
UAV/Target pairing
using binary integer
programming with
fuzzy objectives. 6.
Detailed plan for
next period.

1. Performance of
blue using
proposed
algorithms.

2. Possibility to
connect to other
SHARED
modules.

1. Reasonable attrition
results from P-
controller for two sets
of battle.

2. Demonstration of
integrated simulation
results on the Boeing
Challenge Problem
1.0.

3. Detailed plan for
next research period.

SHARED Final Report

 10

Milestone Objective/Goal Deliverables Evaluation
Criteria

Measures

TDT
Module
Self-Testing
in the
Software
environment

End of
April, 2003

1. Stable and
satisfactory
performance of
TDT module.

2. Full integration
with other
SHARED
modules.

3. Representation
of White part in
the non-
cooperative
game.

4. Development
of decoy
deployment
algorithm.

1. Overall and
detailed flowcharts
of TDT module.

2. A software
environment acting
as the Situation
Representation to
test the performance
of TDT module,
including
inputs/outputs and
integration to TCT,
CPP, AID, and OEP.

3. Analytical
representation of
collateral damage in
the objective
function.

4. Optimization of
decoy deployment
for multiple targets.

5. Extended
Bidirectional
Associative Memory
(BAM) effectiveness
for TDT and CPP
Application.

6. Development of
bit weight BAM
encoding strategy.

7. A switching
strategy in
UAV/Target pairing
assignment.

1. Is performance
of TDT module
with newly
proposed
algorithms
reasonable and
satisfactory?

2. Is integration to
other SHARED
modules
successful?

1. Collateral damage is
reduced.

2. Greatly improved
probability of survival
of UAV with
optimized decoy
deployment strategy.

3. UAVs switch target
assignment under
necessary condition.

4. Successful
integration with other
SHARED modules.

SHARED Final Report

 11

Milestone Objective/Goal Deliverables Evaluation
Criteria

Measures

Hierarchical
Team
Tactics

End of
September,
2003

1. Details of
hierarchical team
tactics scenario.

2. Optimization
of Jamming
strategy.

3. Integration of
BAM in
TDT/CPPP
modules.

1. Full structure of
hierarchical team
tactics scenario.

2. Target Grouping
concept
implemented to
reduce searching
space for target
assignment.

3. Weighted shortest
path algorithm
implemented to meet
time constraints in
target assignment.

4. Cooperative
jamming strategy.

1. Is performance
of TDT module
with newly
proposed
algorithms
reasonable and
satisfactory?

2. Is integration to
other SHARED
modules
successful?

1. Greatly increased
number of survived
UAV at the end of
battle with optimized
decoy deployment
strategy and
cooperative jamming
strategy.

2. Simulation results
of weighted shortest
path algorithm.

3. Successful
integration with other
SHARED modules.

2.2.2 TDT-ULTRA Goals

An important level in the operational hierarchy of overall system is the Team Dynamics and
Tactics (TDT) level. At this level, individual autonomous entities, such as unmanned aerial
vehicles (UAVs) within a team are assigned to a given set of subtasks in order to accomplish an
overall team task. These assignments will support a collective team objective, and will be
translated into end states to be pursued at the next lower level of planning, cooperative path
planning.
With consideration of adversaries in a real battle, the optimal strategies for both sides can be best
analyzed within the framework of non-cooperative game theory. The goals of TDT-ULTRA
include developing the Nash strategies as the optimal tactics for the teams in both forces. One
important step is to address the issue of scalability in calculating target assignments with non-
homogeneous units on each side. An efficient search algorithm needed to be developed in order
to determine the Nash solution. A simulation software package also needed to be developed as a
test bed to investigate the performance of various team tactics developed at this TDT level.

SHARED Final Report

 12

Milestone Objective/Goal Deliverables Evaluation
Criteria

Measures

Scalability
issues in
determining
Nash solution
and
preliminary
Integration

End of April,
2002

1. Scalability
issue in target
selection

2. Development
of Efficient
algorithm in
search space

3. Development
of blue team
coordination
strategies in
target selection

4. Development
of feedback
Nash strategies
dealing with
Boeing
challenge
problems

1. Scalability issue
arises when
determine the Nash
solution of the target
selections for both
friendly team and
opposing team if
each team consists of
a large number of
non-homogeneous
units.

2. An algorithm
called ULTRA is
developed to address
unit level resource
allocation.

3. The flow chart of
efficient search
algorithm.

4. Full flowchart of
the implementation
of ULTRA feedback
control within the
Shared model.

1. Is the newly
developed
algorithm sensitive
to parameter
variation?

2. Does the
implementation of
feedback control in
Boeing challenge
problem improve
the overall
performance of the
blue team?

3. Is integration to
other SHARED
modules such as
TCT and CPP
successful?

1. Computation
complexity is greatly
reduced.

2. The robustness and
sensitivity are verified
on numerous scenarios

3. The net
performance of the
Blue force tends to
improve with feedback
as the battle progresses
compared to the open-
loop controller.

4. Successful
integration with other
SHARED modules.

SHARED Final Report

 13

Milestone Objective/Goal Deliverables Evaluation
Criteria

Measures

PITT test-bed
software
development
and full
integration
with Shared
system

End of
October,
2003

1. Development
of a software
package which
directly connect
with Boeing
open
experimental
platform

2. Full
integration with
other Shared
modules

3. Various tests
of ULTRA
algorithm on
both PITT
developed
package and
Boeing open
experimental
platform

4. Development
of strategies to
address the
target selections
for the
geographically
distributed
targets

5. Development
of strategies to
tackle the
jamming and
decoy issues

1. The ULTRA
algorithm is
extended to include
the following new
features: (1) Sensor
scheduling (Find,
Identify, and BDA),
(2) Multiple types of
weapons per UAV,
(3) Movement,
position, and firing
range, (4) Non-
uniform planning
horizons, (5)
Jamming and use of
decoys, (6) Non
Combat (Sensor)
UAVs, (7)
Adherence to
R.O.E., and (8) Long
term planning

2. Introduction of
Distant Discount
Factor (DDF) into
objective function
used to calculate the
target selection
strategies for the
geographically
distributed targets.

3. Development of
game-theoretic
jamming and decoy
assignment based on
the calculated blue
control and
estimated red
control.

1. Is ULTRA
algorithm fully
integrated into the
Shared system?

2. How DDF
works for the
geographically-
distributed-target
selections?

3. Is team Nash
target selection
superior to other
strategies of target
selections such as
random target
selection, unit
greedy target
selection and group
target selection?

4. Does developed
jamming and decoy
strategies work for
the challenge
problem?

1. The ULTRA
algorithm is fully
integrated into the
Shared system.

2. The DDF is proved
to be important in
target selection
especially when the
target units have
different worth and the
more valuable targets
are farther than the
less valuable ones.

3. Without information
of the enemy’s
strategies, the team
greedy and team Nash
strategies are far
superior to the other
two. The more
effective the force is,
the higher the
incremental
improvements of the
Nash strategy will be
over other strategies.

5. Increased number of
survived UAV at the
end of battle by using
intelligent jamming
and decoy strategies.

SHARED Final Report

 14

2.3 CPP Goals

In a given scenario, there may exist many targets and threats that are either known or pop-up,
stationary or mobile, isolated or well covered. Almost all of them are of UAVs’ interest.
Information about these targets/threats is either known a priori or need to be discovered
incrementally in the field.

The research goals/objectives of CPPP is such that UAVs plan paths cooperatively to reach
certain destinations while meeting certain requirements, including minimizing en route dangers,
meeting time constraints, keeping mutual spacing, and decreasing fuel consumption, etc. The
CPPP also needs to communicate/interact with other modules/human in the system.

The goal of CPPS is to effectively plan paths to control the movements of air vehicles such that
the maximum information about the environment can be discovered at a minimum risk to the
vehicles. This is done with mind to both computational efficiency and cooperation---between
peer vehicles, and between CPPS and other modules and / or human commanders.

2.4 VIA Goals

Milestone Objective/Goal Deliverables Evaluation
Criteria

Measures

Feasibility
Demo
Milestone
(Iteration
1)

Life Cycle
Objective

End of
February,
2002

Demonstrate
feasibility of
automated
interface
design in
minimal domain-
specific scenario

Demonstrate
basic
connectivity to
OEP

Requirements
understanding

Detailed task
plan

Software design for
SHARED
framework

Supporting software
embodying Iteration
1: one task, one user,
minimal domain
semantics, OEP
connectivity

VIA design
documentation
- Software Design
Document
- Model
Documentation
- Java
Documentation

Demonstration of
basic framework

Feasibility of VIA
for use in military
domain: Is this the
right system to
make?

Stable vision?

Stable
architecture?

Risks addressed?

Detailed plan?

Positive evaluation of
planned functionality
and UI paradigm by 2
subject matter experts

Full documentation of
vision and architecture

Full risk analysis

Plan for 5 iterations

SHARED Final Report

 15

Milestone Objective/Goal Deliverables Evaluation
Criteria

Measures

Life Cycle
Architecture
Milestone
(Iteration
2)

End of
September,
2002

Demonstration of
basic VIA system
with multiple
roles, tasks,
views, and
processes

Generation of a
usable SEAD
command user
interface,
including all
required tasks
and participating
objects.

Progress towards
communication
with one
SHARED
module

Full requirements
specification

Software
architecture
specification

Architecture
prototype,
demonstration of full
framework

Continuing advances
in OEP
communication

Preliminary
Communication with
one SHARED
Module

Stable
architecture? Risks
addressed?
Detailed plan?

Is this the right
functional set?

Functionality
adequate and
available?

Are these the right
architectural
details?

Is it possible to
connect to other
SHARED
modules?

100% of required
functions planned

Positive evaluation by
4 SMEs of functional
adequacy, general UI
paradigm

100% of planner
functions and 100% of
OEP entities available
in domain model

Full integration with at
least 1 planner

SHARED Final Report

 16

Milestone Objective/Goal Deliverables Evaluation
Criteria

Measures

Year 2
Demo
(Iteration
3)

End of
April, 2003

Demonstration of
VIA with
communication
with OEP and all
SHARED
modules

Incorporation of
information about
uncertainty,
plans, tasks

Agreement on
full design and
implementation
plan for Iteration
4

Development of
experimental and
advanced plans

Software
executable(s) and
demonstration

Full communication
with OEP advances

Full communication
with all SHARED
modules.

Full documentation
for Iteration 3
additions and
changes

Stable
architecture? Risks
addressed?
Detailed plan?

Functionality
adequate and
available?

Functionality
contributes to
MICA goals?

Is it possible to
connect to all
SHARED
modules?

Is it possible to
generate user
interfaces to all
required functions
and modules?

Has progress been
made on
automation of task
selection and
automation?

Less than 20%
architectural changes,
full plans through
iteration 5

Positive evaluation of
functionality and UI
paradigm by 4 SMEs;
feedback driven

Positive evaluation by
2 UI evaluators

Connection to all
SHARED reasoners,
use of 75% of OEP
functionality

Full domain
specification of user
needs and activities

Full implementation of
need-based UI
generation for all basic
interaction functions

SHARED Final Report

 17

Milestone Objective/Goal Deliverables Evaluation
Criteria

Measures

Year 3
Demo

Software
Demo
(Iteration
4)

End of
April, 2004

Demonstration of
ability of
multiple groups
of UAVs to be
controlled by few
humans.

Demonstration of
task selection
based on
situational
pressures

Incorporation of
Jview widgets

Agreement on
full design and
implementation
plan for Iteration
5.

Software
executable(s) and
demonstrations

Full documentation
for Iteration 4
additions and
changes

Documentation of
VIA reasoning and
heuristics.

Manual plan revision
capabilities

Stable? Risks
addressed?
Detailed plan?

Is VIA
collaborating with
other SHARED
components?

Can VIA generate
usable interfaces
driven by tasks?

Is the performance
of VIA improved
by the addition of
JView and 3D
navigation
capabilities?

Less than 5%
architectural changes,
full plans revision;
addresses 100% of
OEP functions and
capabilities, 100% of
required UI functions
generated

Demonstration of
automated plan
triggering

Comparative results
from 4 users with
iterative improvement

Adherence to all
applicable UI
standards

SHARED Final Report

 18

3 Progress Against SOW

The MICA program was terminated after two years, during Iteration 4 of the development of the
SHARED software. An analysis of progress at the halfway point against the initial task statement
is given in this section.

3.1 TCT Development

Task II. C.3.1.2 (a) The Task Framework
Progress: The overall task framework for SHARED was completed.

A three-level hierarchical structure has been developed.

The SHARED implementation does not follow this task framework exactly, although portions of
it have been used in the implementation.

Task II. C.3.1.3 Plan and Evaluation
Progress: Incomplete.

The plan for the whole mission is completed. But the criterion to evaluate the strategy of the
allocation is unfinished.

3.2 TDT-Hierarchical Development

Task II. C.3.1.2 (b) Iterative Integration of Commander in Team Composition and tasking
Using Ordinal games
Progress: Incomplete. Modeling and algorithm has been completed, but the implementation is
unfinished.

Task II. C.3.2.2 (a) Cooperative Control of Teams Using Pareto-optimality Concepts
Progress: Complete

We formulate cooperative control in the framework of Pareto optimization and seek to obtain the
set of Pareto optimal solutions. Automatically excluded from this set are sets of controls for
which every team is worse off. These latter controls are called inferior solution. A convex linear
combination of the team objective functions is formed and standard optimal control methods are
applied to the composite objective function. For each set of values of the parameter weighting
coefficients we obtain a Pareto-optimal solution.

Task II. C.3.2.2 (b) Using Non-zero-sum Non-cooperative Game Theory to Represent
Adversarial Impact
Progress: Complete

One type of uncertainty in military operations is the impact of an intelligent adversary. We
reduce this uncertainty by using a game theoretic framework involving non-cooperative static
Nash games and mixed strategies, together with feedback control principles, using nonlinear
dynamic models. Also, for a determined UAV/Target pair, play a non-zero-sum non-cooperative

SHARED Final Report

 19

game, cooperating with cooperative jamming algorithm and decoy deployment algorithm, to
determine the optimal salvo size, decoy deployment and cooperative jamming strategies. The
different cultural and social idiosyncrasies, effects-based operator and collateral damage effects
is modeled by different weights and coefficient in objective function

Task II. C.3.2.2 (c) Cooperative Teams Operating in The Presence of an Adversary
Progress: Complete

Combine the featuring in (a) and (b).

Task II. C.3.4.2 (c) Estimating Intent of the adversary
Progress: Plan for Year 3

We may use learning game or partial observable Markov chain to tackle this subtask.

Task II. C.3.1.2 (a) The Task Framework
Progress: Complete

Refer TCT

3.3 TDT-ULTRA Development

Task II.C.3.1.2(b) – Iterative Integration of Commander in Team Composition and Tasking
Using Ordinal Games.
Status: Theory Completed

We have developed a theory for team composition and tasking in which a commander is given a
set of possible battle outcomes, each corresponding to a combination of both friendly and enemy
team compositions. The commander then rank orders these outcomes according to both, his own
preferences, and his estimate of the enemy commander’s preferences. From these subjective
assessments, we can construct a non-zero-sum game matrix and determine a Nash equilibrium
strategy without going through the process of constructing objective functions (which could be
very difficult and impractical to construct in such cases). Further work and implementation of
this task into the SHARED system has been postponed to concentrate on other aspects of TDT as
per the objectives of MICA.

Task II.C.3.2.2(a) - Cooperative Control of Teams Using Pareto-optimality Concepts
Status: Completed

We have developed a theory for dealing with competing teams of cooperative units. We
considered a structure where there are several teams that are competing and each team consists
of units that are cooperating for the benefit of the team. We have developed a solution concept
for such systems called the Non-inferior Nash Strategy. A PhD thesis (Yong Liu) and a paper
appearing in JOTA contain the details of this theory. We have implemented the results of this
theory to the problem of target selection in a game environment in which each side is composed
of a number of heterogeneous units, each capable of independent target selection. These units
work cooperatively through the use of a team objective function. Thus, given an enemy target
selection strategy, it is possible to calculate the team optimal strategy. However, the exponential
relationship between the size of the resulting search space and the number of units present

SHARED Final Report

 20

prohibits the use of standard game theoretic techniques even for situations involving small
numbers of units. To deal with this scalability issue, we have developed an algorithm called the
Unit Level Team Resource Allocation algorithm (ULTRA). Taking advantage of the structure
inherent in the target selection problem, we are able to obtain target selection strategies resulting
in team objective function scores that are on average within 5 percent of the global team optimal
strategy.

Task II.C.3.2.2(b) – Using Non-zero-sum Non-cooperative Game Theory to Represent
Adversarial Impact
Status: Completed

In a military conflict, the adversary’s target selection strategy often strongly impacts the final
outcome. Game theory provides widely accepted tools and solution methods for solving this type
of competitive engagement. In particular, we employed the Nash equilibrium, in which neither
team has an incentive to unilaterally deviate from a given set of target selection strategies. By
applying the Nash strategy to the game theoretic model given in Task II.C.3.2(a) and using an
iterative, ULTRA based Nash solution search we are able to quickly find approximate Nash
strategies with accuracies exceeding 95% when compared to the strategies obtained by
exhaustive search. The speed of the ULTRA process allows for real time implementation of the
target selection algorithm in either open loop or feedback form.

Task II.C.3.2.2(c) – Cooperative Teams Operating in the Presence of an Adversary
Status: Completed

It is well known that a Nash strategy is optimal only when the adversary is intelligent and also
using a Nash strategy. Game theory cannot predict the outcome of an engagement in which non-
Nash strategies are employed. However, we have shown that in target selection type problems, a
team using Nash type strategies has a distinct advantage over an equivalent force using other
types of naïve, non-game theoretic strategies, such as random or greedy. On average Nash target
selection strategies have proven to be the best strategy to use when faced with an adversary,
regardless of that adversary’s target selection methodology.

Task II.C.3.4.2(c) - Estimating Intent of the adversary
Status: Incomplete, planned for 2004-2005

The approach for target selection that we employed necessitates also estimating the enemy’s
target selection strategies. The question that remains to be addressed is: How good is this
estimate and how can it be improved? We have started working on a procedure to use data
obtained from the battlefield to assess our estimate of the enemy’s intent and improve on it. We
had planned on working on this problem in the year 2004; however, the termination of MICA
will render the status of this task as incomplete.

3.4 CPPP Development

SOW-II.C.3.3.2 (c) Biomimicry of Social Foraging for Cooperative Search/Engagement.
Statement: The following aspects of biomimicry of social foraging will be studied in the
proposed work:

SHARED Final Report

 21

Social Foraging Strategies: The utility of further development of the social foraging metaphor
will be explored;

Optimal Coordination Strategy Design: An Evolutionary Perspective.

Progress:

[Status: Complete.] Social foraging behaviors observed in nature are studied extensively. The
focus are on biomimicry of several organisms including two kinds of bacteria (M. xanthus and E.
Coli) and one kind of insects (bees). We construct and compare models representing different
social foraging strategies, based on which different analogous implementable strategies for
groups of UAVs are developed. Theoretical analysis is performed on these strategies and
different implementations are evaluated with OEP testbed.

SOW-II.C.3.2.2 (e) Stability Analysis of Swarms of Agents.
Statement: We will investigate stability analysis of a group of vehicles by characterizing group
cohesiveness and formation patterns as invariant sets and showing that even in the presence of
communication delays, cohesion/pattern formation can be maintained.

Progress: [Status: Complete through Year 2.] We refer to all groups of cooperative entities as
“swarms.” Swarms with first-order dynamics are investigated first and the impacts of different
environment profiles and different agent interactions on swarm stability are studied. Then we
construct a more sophisticated swarm model with each agent having double integrator dynamics
and analyze the stability of the swarms performing social foraging. We characterize swarm
cohesiveness as a stability property and use a Lyapunov approach to develop conditions under
which local agent actions will lead to cohesive foraging, i.e., agents entering certain invariant
sets, even in the presence of imperfections characterized by uncertainty. It is shown that agents
working in a highly coordinated fashion have advantages over agents with non-social behaviors
and these advantages allow for cohesion maintenance, appropriate team dynamics, and hence
mission success. We also model other imperfections like limited sensing capability in the system
and investigate their impacts on the swarm stability. The effect of communication delays, which
is another type of imperfection, is planned for Year 3. Stability analysis of formation patterns is
also in the future plan.

3.5 CPPS Development

Task 1: Real Time Robust Learning and Path Planning
Progress: Incomplete.

Developments:

Utilize probabilistic cognitive maps with Bayesian updates to learn in a three dimensional
environment. The learning process includes both uncertainty about target locations and also
potential threats. This allows the vehicle to incorporate both known and suspected (e.g. human
commander’s intuition) information about the environment while at the same time allowing for
updates due to sensor or other information received as the dynamic environment changes. This
allows a single vehicle to plan where it is best to search.

SHARED Final Report

 22

Task 2: Hierarchical and Cooperative Learning and Planning
Progress: Partially completed. Work still in progress.

Formulated a Dynamic Programming algorithm in which the single step gain is based on
likelihood of discovering targets, the safety of the planning vehicle in doing so, and a prediction
of what effect other vehicles will have. Cooperation is achieved by intelligently predicting (based
on what information is available) the actions of other vehicles.

3.6 Architecture and VIA Development

All subtasks (to the end of year 2) were successfully accomplished by Iterativity. An operational
software application was developed, integrating all other modules and providing an automated
interaction design module to dynamically manage the variable initiative interactions between a
commander and the automated systems.

Subtask 1. Management and Collaboration.
Status: Complete
Activities:

 Manage Task 9 program, including staffing, planning, oversight.
 Collaborate with others on SHARED project and other MICA team members.
 Attend meetings, symposia, and demonstrations.
 Demonstrate emerging technologies, present findings.
 Prepare and submit yearly reports.
 Track budget, labor, and spending; adjust as necessary.
 Evaluate risk and performance at each phase; develop phase plans and task development

efforts.
Accomplishments:

 Adhered to stated management process. No additional staffing required during the
performance period.

 Telecons, travel, etc. as required. Attended all TIMs and PMRs and participated in
working groups and symposia.

 Attended all TIMs, participated in demonstrations to Dr Tenney. Fully participated in VII
and OEP working groups.

 Published 1 conference proceeding (with demonstration), 1 book chapter, and 2 refereed
journal articles. 2 additional submissions outstanding (IUI04 and CADUI04)

 Every 6 months, full documentation and reports were prepared and submitted.
 Spreadsheets and plans required no deviations except additions due to additional

integration requirements to support integration of modules written in C++.
 Full documentation, phase plans, risk assessments, subgoals developed at beginning and

end of each of the 4 iterations that were performed during the 2 years of the program.
Subtask 2. Model Requirements.
Status: Complete through Year 2 (Iteration 4)
Activities:

SHARED Final Report

 23

 Determine the information requirements for hierarchical planning.
 Model resource allocation tasks and team dynamic subtasks provided by Area 2

researchers, and those determined in SHARED tasks 1 through 4.
 Provide additional modeling requirements to Area 2 researchers.
 Develop user role models.
 Develop models of cognitive constraints.
 Incorporate scenarios and missions as available.

Accomplishments:
 Information requirements determined through research and interviews with SMEs;

integrated into situation representation to provide basis for automated interaction
generation.

 Full domain model and situation generation mechanism developed for all tasks required
of a single human managing a squad of 36 UAVs under the framework of the OEP. Tasks
were iteratively expanded and evaluated. Full capability and responsibility model
developed for variably capable agent sets, through the TCT and TDT levels. Manual plan
modification and low level (CPP) flight planning by humans was scheduled for Year 3,
and has not yet been implemented.

 Full collaboration with OEP was undertaken throughout the program. Iterativity provided
requirements for, and assisted Boeing with the simulator notification-event object design.
Provided requirements for simulator provision of IPB data.

 Complete for single user. Additional human users were intended to be added during Year
3, and are not yet implemented.

 Full interaction and presentation generation models were developed, incorporating human
cognitive constraints in the various levels of the interaction design (e.g., information
selection and chunking) and in the use of appropriate display heuristics (e.g., color
coding, layout, attention direction mechanisms).

 Full incorporation of all OEP information and scenarios up to final release; addition of
experimentation functions to allow modification of scenarios.

Subtask 3. Explore Techniques.
Status: Complete through Year 2 (Iteration 4)
Activities:

 Explore techniques to automatically compose the content and form of interactions for
human MICA participants to facilitate hierarchical multi-asset resource allocation.

 Incorporate methods to enhance human contributions, including flexibility and
creativity.

 Incorporate methods to mitigate human deficiencies, including decision bias and
cognitive limitations.

 Investigate mechanisms for cognitive constraints to affect interaction design.
 Investigate issues affecting human guidance to automation, including transfer of

authority and collaborative decision tuning; determine risk and mitigation parameters.
 Explore methods to monitor switching between modes of authority.
 Determine system requirements, evaluate approaches, implement test systems.

SHARED Final Report

 24

Accomplishments:
 Fully implemented and functioning software system developed to automatically

compose dynamic user interfaces, in the context of a command situation involving
multi-asset resource allocation with variably mixed-initiative collaboration between a
single human commander, multiple teams of automata, and external planning agents.

 Developed and incorporated mechanisms for fully implicit interactions for a non-
intrusive interface. Designed and implemented interaction seeding through user
capabilities and interaction emphasis based on assignment. Provided 2/3 of variable
interaction continuum, including manual replanning and planner parameterization
control, but not including plan modification or manual plan creation, and with no
research contributing to fully manual flight (planned for years 3 and 4). Multiple views
of information provided to provide flexibility.

 Situation calculations included to reduce decision bias. Embedded help and exploratory
UI functions included. Experiments to demonstrate the efficacy of these designs planned
for year three.

 Interaction models designed to support appropriate fusing and partitioning of
interactions to different views, and automated filtering of information in each view
implemented to provide interface facilitation.

 Embedded mechanisms for human guidance at all levels. Provided roles and capabilities
system to support human activities and to provide access to other tasks of which the user
is capable. Provided control over software planning agent parameters.

 Developed mechanisms for human commander to transfer control to automation, and for
the human to take control at any level at any time.

 Performed 4 full iterative development cycles following the Unified Process. Iteratively
performed requirements gathering, implementation, testing and evaluation for all
iterations.

Subtask 4. Develop Algorithms
Status: Complete
Activities:

 Develop automated techniques to provide variable initiative interactions to human
MICA participants.

 Develop role-subtask heuristics.
 Develop interaction algorithms to automate design of subtask interactions guided by

usability knowledge.
 Develop compositional interaction model, and develop properties and algorithms for

individual interaction objects.
 Incorporate findings from other subtasks into interaction model and algorithms.
 Investigate interactions to support human interaction with and management of

uncertainty and probability, and mechanisms for discrimination between estimation and
feedback information.

Accomplishments:

SHARED Final Report

 25

 Provided fully expanded capability and activity model to allow human users to monitor,
modify, and perform the functions performed by automated planning reasoners.
Provided integrated system with user-controlled selection of external reasoners.

 Developed and implemented high level mechanisms to associate roles and
responsibilities with interaction components that meet the needs of these roles and
responsibilities.

 Developed and implemented operational software that responds to interaction needs in a
situation to fully automate the design, creation, and presentation of facilitative user
interfaces. Incorporated state of the art usability knowledge at all hierarchical levels of
interaction and presentation models.

 Designed, developed and implemented object-oriented hierarchical interaction model
that is able to self-compose consistent and usable interactions to meet the demands of
the situation.

 Full development iterations were performed on the situation, the interaction, and the
presentation models to incorporate research developments.

 Designed and implemented mechanisms to represent location uncertainty, identification
uncertainty, status uncertainty, and modeled and demonstrated mechanisms to facilitate
human understanding of this information. Provided implicit interactions throughout with
immediate and discriminable feedback at all levels.

Subtask 5. Advanced Methods.
Status: Complete through Year 2 (Iteration 4)
Activities:

 Investigate decision theoretic and game theory methods for task decomposition and
allocation.

 Investigate interaction criteria for spatial, temporal, and predictive planning information,
and visualization and modification of automata goals and plans.

 Investigate mechanisms to provide flexible team composition and re-organization.
 Investigate unpredicted advancements.

Accomplishments:
 Year 1 system provided task decomposition through the situation model. During

Iteration 3, task decomposition was transferred to the TDT modules. Allocation was
considered throughout as a TCT and TDT function, although Year 3 plans included the
inclusion of the ability for commanders to fully perform or modify TCT and TDT-type
planning.

 Designed and implemented interaction design model for visualization, information,
specification, planning, and analysis activities at the squad, team, and UAV levels. Year
3 plans, which were not performed, involved full control of automata plans by human
commanders.

 Designed and implemented fully operational software to provide single human
commander control over a squad of UAVs in a varying battlespace, and provided usable
mechanisms for interaction with and understanding of the behavior of multiple software
planning agent.

SHARED Final Report

 26

 All unpredicted advancements at each iteration were included in that or subsequent
iterations.

Subtask 6. Experimentation.
Status: Complete through Year 2 (Iteration 4)
Activities:

 Perform integrated software functionality and performance experiments.
 Develop basic presentation models for one interaction device, and implement mechanism

for experimentation.
 Develop small supporting battle space and planning scenarios, if necessary.
 Conduct various functionality, tradeoff, and cognitive performance evaluations, and

incorporate findings into ongoing research.
Accomplishments:

 Evaluations (functional, performance, and adherence to guidelines) were planned into and
performed during each iteration of the software. Results of the previous iteration’s
evaluations were incorporated into development processes for the next iteration, although
incorporation of Iteration 4 evaluation improvements has been performed since the
program has been terminated and no Iteration 5 is forthcoming.

 Fully functioning interaction models were developed, tested, improved, and implemented
within the functional SHARED system. Additional functions were added during Iteration
4 to facilitate experimentation with external modules.

 All iterations of the SHARED domain and situation models adhered to the battlespace
scenarios provided by the OEP. Domain semantics were improved and made richer
during all iterations.

 Each iteration involved integrated analyses of functionality, risk and benefit,
performance, and usability, and included planned development based on the results of
these evaluations.

Subtask 7. Integration.
Status: Complete through Year 2 (Iteration 4)
Activities:

 Develop domain dependent implementation and integrate with other SHARED
components.

 Integrate with other program efforts.
 Develop interface to domain and simulation models.
 Provide software demonstration of interactions for commanders and operators involved in

managing a low number of small teams; provide extensions to accommodate more (5-10)
and larger (20-30) teams.

Accomplishments:

 A full domain model was developed and integrated with all SHARED components and
the OEP.

 A domain-independent AID system was also developed and implemented.

SHARED Final Report

 27

 Participation in working groups (particularly OEP), full collaboration with other
SHARED team members via telecon and regular in-person meetings.

 Full interfaces between the Situation Representation (implemented in Java) and the OEP
simulation were developed and tested for each iteration of the OEP. All external planning
modules (TCT, TDT-OSU, TDT-Pitt, CPPS) were provided with full Java to C++
interfaces, and were fully integrated in Iteration 3. The CPPP was written in Java from
Iteration 2.

 Demonstration of SHARED software were available at the end of each iteration up
through Iteration 4. Demonstrations were given or available at each TIM and PMR. All
versions of SHARED since Iteration 1 have included the ability to manage 36 UAVs in
up to 36 individual teams.

SHARED Final Report

 28

4 Accomplishments and Achievements

This section summarizes the accomplishments and achievements of each research group.

4.1 TCT Accomplishments

The major accomplishments of TCT are as follows:

A Task Hierarchy architecture for SHARED was developed and is presented in the following
figure.

Figure 4.1 Position of TCT module in SHARED

Figure 4.2 Examples of Task Decomposition

SHARED Final Report

 29

The “subsumption” architecture was not entirely adopted but follows subsumption concepts,
although various aspects are common.

Aspects of TCT, as it is presently within SHARED, are:

 Basic assumptions, specifying core tasks, duration, and resource depletion.

 Utilizing an Interactive Rule Base in a Control System

 Probabilistic Resource Allocation and Scheduling with Depleting Resources

 Evaluating Adversarial Resource Allocation.

4.1.1 Basic Assumptions:

The basic assumptions are that the regions of interest are concentrated for both sides (Called
Areas), that these Areas are at known locations, have known targets existence probabilities and
capabilities.

It is also assumed that we have probabilistic knowledge of pop-up threats between areas.

The basic Task Planning will generate a series of stages. In each stage, the UAVs will be
allocated to perform a mission. Allocation of the UAVs and the risks and returns involve
calculation a series of formulae based on the above assumptions. The timing formulae are given
below.

1) Time for UAVs to fly from point X to point Y:

ρ

ρ

Enn

E
v
dt

XY

XY

=

= −1

where tXY is the time for UAV to fly from X to Y,

d is the direct distance from X to Y

v is the average velocity of UAVs

nX is the number of UAVs starting from X (initial number)

nY is the number of UAVs at point Y (survived number)

E is the “Easiness Coefficient”, which specifies how easy it is for UAVs to fly from
X to Y. []0,1E ∈ where 1 indicates the easiest and 0 indicates that is the most
difficult.

[0,1]ρ ∈ is the time priority coefficient, which denotes how much the commander
cares about the time, 1 means the time is the most important for the mission, 0 mean
the time is not as important as the number of survived UAVs., i.e., UAVs may find a
far and safe way to get to the destination. This parameter represents a simple relation
between the time and the number of survived UAVs

Also

SHARED Final Report

 30

⎪⎩

⎪
⎨
⎧

=
−=

)(
1

A

R

kn
nfD
DE

where D is the difficulty coefficient, which presents the how hard for UAVs to fly
from X to Y, []1,0∈D 0 presents the easiest and 1 presents that is very difficult.

Rn presents the number of defense weapons of the Red on the road

k is the engage coefficient which presents the efficiency of blue UAVs to defend
or/and fight back the red weapon. For blue, k is the higher the better, which
determined by the UAV quality and the weapon type it carries.

f(.) is a increasing function:)1,0[]0[→∪+R

2) Time for UAVs to destroy certain number of targets:

destroy
n

WT

attack
UAV

T
destroy

pp

t
n

nnt

≥−−

××=

0)1(1

][0

where tdestroy is the time to destroy certain number of targets,

nT is the number of targets,

nUAV is the number of UAVs engaged in destroying

pdestroy is an indicator of satisfying probability of destruction, which means that if the
destruction reaches the value, the mission finishes.

pWT is the destroy probability of UAV to target with one attack

[.] is the Gaussian function, [x] means the smallest integer not less than x

tattack is the least time between two rounds of attacks of UAV, which is the fixed
value

we also have

1
0 1

lg(1)
[log] []

lg(1)
destroy

WT

p destroy
p

WT

p
n

p
−
−

−
= =

−

where lg stands for the base ten logarithm and log is as given by the relationship
shown.

3) Time for UAVs to search a given area:

)1(

)(1

0arg

0arg

td
wvn

S

tn
wv

S
n

t

ett
sensoruav

area

ett
sensor

area

uav
search

×+
×

=

×+
×

=

x = nR/knX\

SHARED Final Report

 31

where searcht is the time to search certain area,

Sarea is the area to be searched,

nuav is the number of UAVs engaged in search

v is the average velocity of UAVs

wsensor is the average width of sensor, so (v*wsensor) presents the area searched by one
UAV is a unit of time

ntarget is the number of targets (probably) found in the area

t0 is the least time for a UAV to confirm a target, including the time to go back to
target, recon again and continue to search area

dtarget is the density of targets, which means the estimated number of targets existing
in a unit area

4) The number of targets can only be estimated. This is based on the area to be searched, it is
given by:

ettareaett dSn argarg ×=

The timing formulae, as given above, are fairly obvious and the approximations are evident.
However, resource allocation and scheduling decisions have to be based also on some
intangibles, related to the importance a commander attaches to certain issues. We attempt to
quantify three variables:

• Average Risk related to an Area

• Attack Priority of an Area

• Information Value of an Area

We provide simple formulae for each of the above three variables:

• “Average Risk” for each area (jR)

rjl denotes the max range of the targets in the thl type

2

1
()

jam

j jl kl dl
l

R r p pα
=

= + ⋅∑

mja: the number of targets with air defensibility in the thl area

[0,1]α ∈ : the variable shows the repairable capability of a UAV. The smaller α is, the
stronger the repairable capability of a UAV

pkl and pdl are the kill-probability and the damage-probability

1

1n

j
l jl

A
d=

=∑

• “Attack priority” of each area (jA)
djl: the distance between the thj Red area and the thk blue area

SHARED Final Report

 32

n: the number of targets in the thj Red area

1

p

j jl
l

I I
=

=∑

• “Information Value” of each area (jI)
Ijl: the value of information for the thl target type and ()+∞∈ ,1jlI

p: the number of target types in the thj area

Variables defined in current specific case (CP1.0) are:

The number of the Blue airbase is p=1.

The dimension of white areas is q=1.

ljx is not scheduled if g2j=0 (the total number of SSMs in the thj area)

Only three kinds of weapons are assigned to UAVs in the specific case. They are sub-munitions,
bombs and missiles.

Parameters that can be varied in the special case:

1. The number of the Red areas, m

2. The number of available UAVs of each type

3. The start and end of mission times

4. The IPB of the Red areas, for example the number and distribution of the Red targets in
each area, the locations of the Red areas and the target types in each area.

5. The number of the Blue base can be more than 1.

6. The dimension of white areas.

4.1.2 Utilizing an Interactive Rule Base

Preliminary scheduling relies on prioritizing the different tasks that UAVs need to accomplish. In
SHARED, we provide a Rule Base (derived from the given Rules of Engagement) that can lead
to scheduling priorities. We have attempted to make the Rule Base as generic as possible so that
it can be used in different situations and scenarios.

The Rule Base assumes there are Type A operations (operations to clear areas of communication
and sensing capability) and Type B operations (operations dedicated to clearing areas of high
level firing power). We then give the following simple low-level Rules:

We consider a finite number of relevant locations, and a finite number of operations that can be
performed at those locations. A set of rules was selected based on the Rules of Engagement and
definition of CP 1.1 and general considerations. They continue to be under review. The rule base
we are using in TCT is given by,
Rule 1: Type A operations, if any, will always precede type B operations.
Rule 2: Type B operations, follow type A operations in areas cleared due to type A.

SHARED Final Report

 33

Rule 3: No operations in NNC (Neutral Northern Country) would be done unless required by the commander.

Rule 4: No type A operations in area with no SSM unless needed for safety in other area.

Rule 5: Guard Blue Base all the time.
A Task Matrix and Stage Generator were defined to automatically generate the multi-stage plan
for a mission.

Assume that there are n types of tasks in one mission, they are []T
ni xxxx "" ,,, 21 , where i

denotes the thi task type, such as SEAD vs. IADS, Destroying SSM, etc. Furthermore, xi
represents whether there is the thi task type in the mission. If xi =0, there is no thi task type in the
mission, otherwise xi equals 1.

Assume the number of the Red areas in the mission is m and the number of the Blue airbases is
p. Also in the battlefield, there is some danger, or high-risk white areas, where no tasks would be
carried on in those areas unless the commander requires. We define the set of these areas as
White Area and the dimension of this set is q. Then with these, we define the tasks as follows:

In the thi task type, according to the areas in the mission,],,[)(21 pqmiiii xxxx ++= " (1,..., 1i n= −)
indicates the vector for the thi task type in the areas. And ijx denotes the variable of the thi task
type in the thj area. Furthermore, if there is a thi type task in the thj area, 1=ijx , otherwise

0=ijx . Therefore, we can see that xi = 0 (1,..., 1i n= −), if and only if 0ijx = for
j=1,2…(m+q+p). Hence the following task matrix can be defined,

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

++++++

++++++

++++++

)()1()()1(21

)(2)1(2)(2)1(222221

)(1)1(1)(1)1(111211

2

1

pqmnqmnqmnmnnmnn

pqmqmqmmm

pqmqmqmmm

n xxxxxxx

xxxxxxx

xxxxxxx

x

x
x

X

………
#"##"##"##

………
………

#

In order to illustrate the sequence rules, the following functions are defined.

⎩
⎨
⎧

==
otherwise

commanderthebyrequiredisxif
jiff ij

ij 0
1

),(

which indicates the required status of the thi task type in the thj area.

),(jiggij = , which denotes the number of associated targets of the thi task type in the thj Red
area (j = 1,…m). For example, if xij represents the task, Destroying SSM in the thj Red area, then
gij is the assumed total number of SSMs in the thj Red area.

The stage is defined as a period of time in the mission, during which no more than one kind of
task type can be executed in the Red areas. Furthermore, we define is to indicate whether the

The Red areas White Area The Blue areas

Areas

Task
Types

SHARED Final Report

 34

stage associated to the thi task type is empty or not. is = 1 represents that there is a nonempty
stage for the thi task type that need to be done in the Red areas, otherwise si = 0. More clearly, if
the stage for the thi task type has been finished or xi = 0, is =0. Without loss generality, we
assume that xi (i=1,2…n-1) will not be executed, unless xk (k=1,2….i-1) has been finished or

0=kx (k=1,2….i-1), i.e. is = 0. Moreover, nx is one task type that is carried on in all stages.

SHARED can use the Rule Base as is, but asks the Commander to confirm the rules that it
specifies, or, the outcome of those rules, that is the preliminary schedule.

The use of rule bases within a real-time control system is a somewhat new phenomena and some
results have been developed in the context of fuzzy control theory. However, our development
here is unique and new in that it pertains to prioritizing control actions, thus specifically a timing
sequence. We believe this to be an open research area to be addressed.

4.1.3 Probabilistic Resource Allocation

An algorithm dealt with the heterogeneous resources allocation is developed in TCT. This
algorithm is mainly based on proportional control algorithm. The following variables are
considered in the allocation, such as Number of targets, Air defensibility of targets, Target status,
classified as potential, known and unknown and information ability of targets, like
communication capability.
• “Total payoff” for each area (jP) is

Known targets: unknown targets: Potential targets

kn1> c 0un ptc c≥ ≥ > . vjl is the score for each target. Then the “total payoff” in the jth area is

calculated by,
• Preliminary resource allocation is given by:

1

j

j

j j j jUAV
j m

j j j j
j

A P R I

A P R I

β

β
χ

=

=
∑

where m is the number of regions, jβ is a tuned parameter for future use. UAV
jχ can be looked as

a variable represented the forecasted demand in the battle, since it reflects the comprehensive
target information in each area. Using proportional approach to satisfy the estimated demand, the
preliminary resource allocation in the TCT agent is obtained as follows. For the UAV team in the

thj area, the number of UAVs is:

∑
=

=
)(

1
)(

knjm

l
knjlknj cvp

()

()
1

j unm

j un jl un
l

p v c
=

= ∑ ∑
=

=
)(

1
)(

ptjm

l
ptjlptj cvp

)()()(ptjunjknjj pppP ++=

SHARED Final Report

 35

() UAV
jLSLWSCSSSW

jLSjLWjSCjSSjSWj

nnnnn

nnnnnn

χ++++=

++++=

where SWn , SSn , SCn , LWn and LCn denote the number of UAVs in type Small Weapon, Small
Sensor, Small Combo, Large Weapon and Large Sensor, respectively. Therefore, five different
types of UAVs are allocated into areas according to this percentage.

4.1.4 Evaluating Adversarial Resource Allocation

We have considered the adversarial aspect of resource allocation by defining a criterion and two
new parameters. The criterion we introduce is “Force Value” (to be defined below) and the new
parameters are “aggressiveness” and “mobility”. These parameters are used as subjective
quantitative indicators of the (Blue) Commanders evaluation of the Red strategy. The results of
the resource allocation are shown as following.

Figure 4.3 Experiment on Changing Target Distribution

Figure 4.4 Experiment on Changing Assessment of Red Intentions

SHARED Final Report

 36

The upper two figures are the allocation results with the specific target distribution shown in the
upper left figure. The right two figures are the allocation results with different values of mobility
and aggressiveness. Force value is defined here in order to evaluate the strategy of the allocation
results. It depends on the number of UAVs and the types of UAVs in one team. The force value
is defined as follows:

∑
=

=
LW

SSl
jljl

B
j VnF

where },,,,{ LWLSSCSWSSl ∈ and Vjl denotes the predefined force weight for the thl type
UAVs. For example, Vss should be less than Vsc. (SS: Small Sensor; SW: Small Weapon; SC:
Small Combo; LS: Large Sensor; LW: Large Weapon). Force Value is a mapping from five
different kinds of UAVs to positive real number. Due to different types of resources in a team, it
is hard to describe how much the strategies of resource allocation change in one team. So Force
Value is defined to represent the strategy of resource allocation in a team. The change of the
strategy versus the change of the assessment of Red intentions is shown in Fig. 4.4.

4.2 TDT-Hierarchical Accomplishments

The major accomplishments of TDT-Hierarchical are as follows:

4.2.1 P-Controllers

A new theory has been developed for the control of teams of cooperating entities in the presence
of intelligent adversaries using a game theoretic framework involving non-cooperative static
Nash games and mixed strategies, together with feedback control principles, using nonlinear
dynamic models. A P-controller, where P stands for proportional, has been designed to control
the optimal salvo size of blue such that total number of platforms and total number of weapons
of blue forces remaining at the end of the battle are maximized, while those of the adversary are
minimized.

4.2.2 TDT Multi-Level Architecture

A Game Based hierarchical TDT architecture has been developed, as shown figure below.
This was accomplished by the innovative integration of heuristic-based upper level planning
(multi-stage UAV-target assignment) and event-based lower level game, which considers the
collateral damage effect. After reading available information of some UAVs from the situation
model, TDT first makes a decision that whether the UAVs should to get refueled, fly back to
base or, are available for a mission. So far there are four types of mission: SEAD, Guard Blue
Base, Close Air Support and Interdiction. Suppose the mission assigned is SEAD, TDT will be
determining UAV/Target pairing assignment with given weapons and targets information. For a
determined UAV/Target, play a non-zero-sum non-cooperative game. For other missions, the
procedure is similar.

SHARED Final Report

 37

Figure 4.5 TDT Multi-level Architecture

A heuristic based upper level planning strategies has been developed. TDT acts as a dynamic
team controller in real time with adversaries. The idea of the hierarchical structure originally
comes from the trajectory-tracking problem in adaptive control and also it is the situation in the
real world. In a word, the upper level planning is an optimizer that generates a team plan
involving target assignment and attacking scheduling for various types of missions, while the
lower level game orientated controller helps team members to track this plan.

Most of the work that has been done falls into the mission of SEAD, which is most difficult and
of greatest importance. In the upper level planning for SEAD, the problem is defined as to assign
the possible targets to each UAV (weapon/sensor) in the team in an optimal sense as well as to
arrange the tasking (attacking/sensing) order under the timing constraint in real time. The results
from the planer should tell each UAV a plan about which targets to attack and what order to
follow.

In order to improve the attacking efficiency, A 3-step approach has been proposed: 1) Target
characteristic analysis, includes target grouping according to the geographic distribution and
identification of the most critical targets within the groups; 2) UAV Sub-team Formation, during
which UAVs is divided into subgroups based on the result of target grouping; 3) Multi-stage
Mission Strategy, in which there are two stages. In stage 1, the focus is on the critical targets in
the group. During stage 2, all of the UAVs in the team work cooperatively to remove all possible
targets.

The research work on the first two steps has just been initialized and the major work completed
is about the multi-stage mission strategy. In stage 1, the critical target within the group will be
attacked, and the heuristics and experience will be applied such that an attacking sequence is
found and the UAV safety during this stage is maximized. Usually, minimum number of targets
other than the critical targets will be attacked in this stage, and the target is attacked only when it
is necessary to increase the security level for UAVs. The UAVs to attack are chosen based on the
match-up principle, where the most suitable UAVs will be assigned.

SHARED Final Report

 38

After the most critical targets have been removed from the group, in stage 2, all of the UAVs will
cooperate to attack the remaining targets. And the problem in this stage has been narrowed down
and is only to find the target assignment and the attacking order for each UAV. A weighted
shortest path algorithm has been designed and implemented. In the algorithm, each UAV has its
own decision-making capacity to choose a target and the decision-making has been
decentralized. In brief, the algorithm starts with a given UAV sequence. At the beginning, all the
targets are in the unassigned target set. And the UAV is picked one by one following the order of
the initial UAV sequence, and then this UAV will make its own decision on which target to
attack from the unassigned target set. The target that has been assigned to some UAV will be
removed from the unassigned target set. This process will be followed until all of the targets will
be assigned. However, in the case when the number of the UAVs is less than that of targets,
when all of the UAVs have got at least one target assignment, a simple method based on the
distance to travel is used to estimate that which UAV will finish its current task first and be the
next available UAV ready to choose one more target. After all of the targets have been assigned,
each UAV in the team will have a list of targets to attack with the specified order. However, this
result is dependent on the initially given UAV sequence, and clearly a different sequence leads to
a different result. Here to evaluate the effect from the UAV sequence, we have proposed the
following fitness function for the team:

1

M

Team i i i
i

J E p m t
=

⎧ ⎫= ⋅ ⋅⎨ ⎬
⎩ ⎭
∑

where TeamJ is the expectation of the summation, M is the number of the targets; ip is the
probability of being killed for the target i , which depends on which UAV that target i has been
assigned to; and im is the thi target’s value that indicates its relevant importance; it is the time
that it takes that target i to be destroyed by some UAV. With this fitness function for the team,
GA algorithm is applied to find the best UAV sequence, leading to the maximum of TeamJ . And
the assignment result associated with this best sequence is considered as the final result.
Furthermore, it is worth noting that the result also depends on the criterion on which each UAV
makes its own decision of which target to attack. Here is one possible strategy. Each UAV makes
its own decision as if it is the only UAV that will attack all of the unassigned targets. To be
consistent with the team objective TeamJ above, each UAV will search for an attacking order such
that the following objective function is minimized.

1

jM
j j

UAV i i i
i

J E p m t
=

⎧ ⎫⎪ ⎪= ⋅ ⋅⎨ ⎬
⎪ ⎪⎩ ⎭
∑ .

Here the subscript UAV indicates that it is the objective for one UAV; jM is the number of the

unassigned targets when UAV j makes its choice; j
ip and j

it have the same meaning, but with
respect to UAV j . It can be seen that the objective is similar with the team objective, but the
variables have slightly different meanings. With this objective, in some sense, each UAV will
solve a Traveling Salesman Problem (TSP). The UAV will choose the very first target from the
resulting attacking sequence as its next target. As a summary, the weighted shortest path
algorithm in stage 2 has two levels of operations. In the lower level, decision-making has been
decentralized and each UAV searches its best attacking scheme and pick the very first target one

SHARED Final Report

 39

by one until all the unassigned targets have been assigned. In the upper level, GA algorithm has
been applied to find such a UAV sequence that leads to a better team objective TeamJ .

Here we give some arguments for the described strategies in TDT module. The 3-step approach
is proposed for the purpose of increasing the UAV safety and the attacking efficiency. Without
those critical targets, there will be less possible threats to the UAVs. During stage 2, the team
objective is created this way because of the time issue and the most important targets are
preferred to be destroyed with less time. Also, the decentralized decision-making is introduced
because the dimension of the centralized optimization problem could be huge when the number
of UAVs and targets is big. Here the cooperation within the team is emphasized such that a
system behavior in an optimal sense will be achieved. Furthermore, this decentralized scheme is
more adaptive to the dynamic battlefield with uncertainties, especially when there appear more
targets or some of the UAVs are damaged during the mission. The centralized result may vary
largely from the variation of the battlefield, but with decentralized algorithm, only the next UAV
who will make its own decision will be affected.

An event based lower level game-oriented controller has been developed. For a given
UAV/Target pair, a non-zero-sum non-cooperative game problem is solved in the lower-level to
determine an optimal feedback controller *b

mu for Blue force, which is comprised of the optimal
salvo size *b

mα , decoy deployment variable *b
mβ and cooperative jamming variable *b

mγ . As shown
in the diagram below, the objective function for Blue force consists of weighted cost of being
attacked , (,)B risk b r

m m mJ u u , weighted cost of attack , (,)B attack b r
m m mJ u u and cost of collateral damage

, (,)B collateral b r
m m mJ u u . In the mean time, the performance index for Red force includes weighted cost

of being attacked , (,)R risk b r
m m mJ u u , weighted cost of attack , (,)R attack b r

m m mJ u u . Both Blue and Red try
to minimize their own cost, which involves the other’s decision variable. The solution for each
UAV/Target pair is output to the UAV to destroy maximum enemy with minimum cost.

Figure 4.6 Diagram for Computing Lower-Level Controller

SHARED Final Report

 40

4.2.3 AI-Based Task Assignment

Several artificial intelligence based centralized target assignment algorithms for teamed
UAVs have been developed. Task assignment is one of the core steps to effectively exploit the
capabilities of cooperative control of multiple Uninhabited Aerospace Vehicle (UAV) teams.
Task assignment is an NP-complete problem. In this project, we present several new task
assignment algorithms that are based on the principles of artificial intelligence (AI), such as
fuzzy logic, genetic algorithm and particle swarm optimization etc. We discuss the adaptation
and implementation of the AI search strategy to the task assignment problem in the cooperative
control of multiple UAVs.

A new theoretic approach to fuzzy noncooperative Nash games has been developed.
Systems that involve more than one decision maker are often optimized using the theory of
games. In the traditional game theory, it is assumed that each player has a well-defined
quantitative utility function over a set of player’s decision space. Each player attempts to
maximize/minimize his/her own expected utility, and each is assumed to know the extensive
game in full. At present it cannot be claimed that the first assumption has been shown to be true
in a wide variety of situations involving complex problems in economics, engineering, social and
political sciences due to the difficulty inherent in defining an adequate utility function for each
player in these types of problems. On the other hand, in many of such complex problems each
player has a heuristic knowledge of the desires of the other players and a heuristic knowledge of
control choices that they will each make in order to meet their ends. In this project, we utilize
fuzzy set theory in order to incorporate the players’ heuristic knowledge of decision making into
the framework of conventional game theory or ordinal game theory. We define a new approach
to N-person static fuzzy non-cooperative games and develop a solution concept such as Nash for
these types of games. We show that this general formulation of fuzzy non-cooperative games can
be applied to solve multi-decision making problems where no objective functions are specified.
The computational procedure is illustrated via application to a multi-agent optimization problem
dealing with the design and operation of future military operation. Ref. [OSUTDT-6]

4.2.4 Extended Bidirectional Associative Memory

Extended Bidirectional Associative Memory has been developed for TDT and CPP
Applications. We extended the Basic Bidirectional Associative Memory (BAM) (Ref. 12, 13) by
choosing weights in the correlation matrix, for a given set of training pairs, which result in a
maximum noise tolerance set for BAM. We prove that for a given set of training pairs, the
maximum noise tolerance set is the largest, in the sense that this optimized BAM will recall the
correct training pair if any input pattern is within the maximum noise tolerance set and at least
one pattern outside the maximum noise tolerance set by one Hamming distance will not converge
to the correct training pair. This maximum tolerance set is the union of the maximum basins of
attraction. A standard Genetic Algorithm (GA) is used to calculate the weights to maximize the
objective function which generates a maximum tolerance set for BAM. We have developed a
BAM model of CPP. The optimization based training strategy was successfully implemented a
CPP application. Feedback sensing was introduced as another extension of BAM in the context
of the CPP application. Both extensions as well as the basic BAM were implemented in C++
simulation software. Simulation results suggested that the optimization based training strategy is

SHARED Final Report

 41

very promising in designing the training weights, and BAM appears to be promising for future
applications of military Hierarchical Cooperative Control.

4.2.5 Cooperative Jamming Strategy

A Cooperative Jamming Strategy has been developed to make use of the network-Centric
paradigm by exploiting multiple platforms to gain geometric, physical and tactical
advantage. Assume that the Blue force consists of weapon UAVs and sensor UAVs; the Red
force consists of SAMs and radars (EW radars, SAM search radars and SAM fire control radars).
Each Blue UAV has a jammer. The Blue jammer deployment strategy has been developed such
that Blue UAVs are protected from being detected by Red radars. Because Red radars can
network, the ideal situation is to jam all Red radars. However, due to the limited Blue jamming
power, sometimes it is impossible to fulfill the ideal situation. Thus our goal is to jam as many
Red radars as possible. This is an exhaustive search problem and the computation quantity
depends on the number of both Blue jammers and Red radars. A suboptimal static jamming
strategy with less computation quantity is developed as the following: Suppose that the initial
states of all jammers are closed. In order to protect Blue UAVs from the Red attack, a
conservative strategy is used: only the jammers loaded on the UAVs which cannot be reached by
all of the Red weapons are regarded as available. The information whether a Blue UAV has been
painted or not is known, but it does not know it is painted by which Red radars. The flowchart of
the algorithm is given below and the details are followed.

SHARED Final Report

 42

Check the validity of input parameters

Start

Initialization

Get Available Jammers

Guess Red Radar’s Target

Sort Red Radar by Importance

Stop

Select a Radar to Jam

choose jammers for this radar

 no radar to jam
or

no available jammers

Yes

No

Set all jammer OFF

Which is beyond all the Red
Weapons’ engagement zone

Criterion:
1. EW radar
2. Radar which has captured
Blue target
3. Others by the value of Paq

Figure 4.7 Flowchart for Cooperative Jamming Strategy

Step1: Guess the aim of each Red radar. It is supposed that each Red radar can track only one
target Blue UAV at a time. It is possible that several radars can simultaneously track the same
target UAV. For the purpose of jamming a radar, we must know which target UAV this radar is
currently tracking. Although we cannot know exactly which UAV is tracked by which radar, the
probability of detection that a given UAV is tracked by a certain radar can be estimated
according to the UAV type, radar type and the distance between the target UAV and the radar.
Suppose that there are N jammers and M radars. Denote Pij as the probability that ith radar could
successfully detect the jth UAV, i=1, 2, … , M and j=1, 2, … , N. Determine each Red radar’s
target with the maximal detection probability criterion, that is to regard the j*th UAV as the ith
radar’s target if *

* , (1 and 1)ijij
P P j N j N>= ≤ ≤ ≤ ≤ ;

Step2: Sort the Red radars. Assign every Red radar a weight which is a function of radar type,
target UAV type, target UAV value and detection probability. This weight describes the radar’s
importance. For example, for the same type radars, the radar with large detection probability and
large target UAV value has higher weight. Sort the radars by their weights. The larger weight the
radar has, the earlier it should be jammed;

SHARED Final Report

 43

Step3: Assign jammers for each Red radar that can be jammed by the current available jammers.
In order to jam as many as possible radars, the proposed principle is to jam a radar using as little
jamming power as possible:.

Step 3.1: For the thi radar, we first calculate the jamming signal ijJ of each available
jammer (indexed as j) to this radar.

Step 3.2: If all available jammers are used, but still cannot jam a single radar, i.e.
J S≤∑ , then this radar is selected out, and marked as cannot be jammed.

Step 3.3: Otherwise this radar can be jammed, continue the following steps:

Step 3.3.1: Sort these available jammers in ascending order by its contribution
(jamming signal denoted as Jij), such that Ji1<=Ji2<=…<=Jin, n is the number of
available jammers at the present time.
Step 3.3.2: If the jammer with the largest jamming signal Jin can jam this radar (Jin
> S), then we choose the jth jammer such that the (j-1)th jammer cannot jam the
radar but the jth jammer can, ijJ S> , (1)i jJ S− ≤ . Mark this jammer as used. Note
the number of available jammers decreases by one when a jammer is marked as
used.

Step 3.3.3: If the jammer with the largest jamming signal Jin cannot jam this radar,
i.e. inJ S≤ , then we choose this jammer as the first one to jam this radar, and let

inS S J= − and 1n n= − .

Step 3.3.4: Repeat step 3.3.2 to step 3.3.3 to select the other jammers for this
radar until it is jammed.

4.2.6 Cooperative Decoy Deployment

A Cooperative Decoy Deployment method has been developed to maximize the total
probability of survival of Blue UAVs. Assume that a UAV carries N identical decoys and W
weapons (N and W are fixed), and plans to attack M targets in the attacking order T1 first, then
T2, … and finally TM. The weapon number used to attack each target has been decided after
salvo size computation. We developed a decoy deployment strategy such that the survival
probability of UAV after attacking the M targets is maximized. This is an exhaustive search
problem and the computation quantity depends on the number of both decoys and targets. The
total number of possible deployment strategies is MN which can be very large for large M and N.
In order to meet the requirement of real time application, a unit greedy suboptimal strategy is
developed and consequently the search space is reduced to M*N. Suppose a UAV carries q-1
decoys and the suboptimal deployment strategy for these q-1 decoys has been obtained using the
unit greedy algorithm. If the UAV is given one more decoy, what is the new strategy? The ‘unit
greedy’ here means to make the best use of each decoy. Keeping the original q-1 decoy
assignment unchanged, assign the qth decoy to the target such that the total survival probability
of the UAV after attacking the M targets is the maximum. Let q = 1 at first and obtain the
optimal deployment strategy for the first decoy. Then increase q by 1 getting the suboptimal
deployment strategy for the two decoys. Repeat the process until q = N getting the suboptimal
strategy for all of the N decoys.

SHARED Final Report

 44

4.2.7 Experiments and Simulation Result of TDT-Hierarchical

A software environment has been developed to test TDT in a simplified simulator which includes
the AID, TCT, CPP and TDT. It can do multi-team & multi-mission simulations.

The effect of deployment of decoys and jamming on the battle result was verified: after applying
the decoy and jamming strategies, more blue assets (sensor UAV and weapon UAV) remain
undamaged at the end of the battle, while more red assets (FCS and SAM) are destroyed.

Figure 4.8 Simulation Result of TDT-Hierarchical Algorithm

The effect of the commander’s priority ranking of collateral damage on the battle outcomes was
verified: the higher the priority of collateral damage (that is, blue will try more effort to avoid
shooting at the white objects), the more the red assets will survive.

SHARED Final Report

 45

2 5 2

2 6 2 High

2

End

7 4 Beginning

Red White

of Undamaged Units

Low

Blue

C.D. Priority

High

Low

 Demo C.D.

C.D.= Collateral Damage

Figure 4.9 Effect of Priority of Collateral Damage on Battle Outcomes

4.3 TDT-ULTRA Accomplishments:

The major accomplishments of the TDT-ULTRA team are described below:

Accomplishment 1: Managing Scalability

An important consideration in using a game theoretic approach at the TDT level is the
dimensionality of the search space. Consider, for example, a team of N Blue units engaged in
combat with a team of M Red units as illustrated in Figure 1. Assume that the units on each side
are non-homogeneous, so that it would not be feasible to group them into a smaller number of
sub-teams. A game theoretic approach will therefore need to examine all the possible
combinations of target assignments (or control) options for units on one side against all units on
the other side. For example, each blue unit has M+1 choices of targets consisting of M Red units
and the no target choice. In that case, the Blue side will have (1)NM + options and the Red side
will have (1)MN + options. Normally, these options are arranged in a matrix where the Blue
options are represented as rows and the Red options as columns. If the effectiveness of the

SHARED Final Report

 46

control options is assessed using objective functions (,)BJ u v and (,)RJ u v for the Blue and Red sides
respectively, then each entry in this matrix will be a pair of real numbers { (,)BJ u v , (,)RJ u v } that
correspond to the pair of options { ,u v } where u and v represent Blue and Red control variables,
respectively. Table I illustrates the dimensionality of this matrix for several values of N and M.

Figure 4.10 The target Assignment Problem

A pair of control options { , }N Nu v will represent a Nash equilibrium solution if the following two
inequalities hold:

(,) (,) for all possible Blue control options ;
(,) (,) for all possible Red control options .

N N N
B B

N N N
R R

J u v J u v u
J u v J u v v

≥
≥

The TDT level in SHARED will allow the commander to examine “what if” scenarios by
choosing different objective functions, or different weight coefficients in the same objective
function. In particular, this would lead to different “what if” scenarios that a commander might
want to examine about his guesses (or estimates) of the adversary’s objective functions. The
different scenarios translate into different forecasted enemy intents, leading to different Nash
solutions.

Table 4.1 Dimensionality of the Target Assignment Game Matrix

Number of
Blue Units

N

Number of
Red Units

M

Size of Game Matrix:
(1)NM + × (1)MN + Size of Search Space

4 3 256 × 125 332 10×

8 6 6 6(5.76 10) (0.53 10)× × × 123.06 10×

16 12 17 14(6.65 10) (5.82 10)× × × 3138.71 10×

UAV1

Unit 2

Unit 1

Unit M

UAV2

UAV3

UAV4

Unit 1

Team B

Unit 2

Unit 3

Unit N

Team A

SHARED Final Report

 47

As is clear from Table 4.1 an important issue that needs to be addressed in determining the Nash
solution is scalability. An exhaustive search over the entire space of control options is feasible
only if the number of units on each side is small. When the number of units on each side is larger
than 6 or 7, the search space becomes too large and computationally not feasible to search within
for the Nash solution. An efficient search algorithm called Unit Level Team Resource Allocation
(ULTRA) that overcomes this scalability issue has been developed and implemented in the TDT
level. Essentially, ULTRA takes advantage of the structure of the control options available to
each side. For a given control option on one side, it first optimizes the objective function for each
member of the team on the other side, and then iterates among the remaining members of that
team by changing once and then twice their target assignments while keeping the remaining
assignments fixed. These iterations will continue until an optimum team response is reached. In
this sense, this algorithm shares some of the properties of the Hooke-Jeeves and the Rosenbrook
search algorithms for function minimization. Once the team optimum response is determined, the
roles of the two sides are interchanged, and the process repeated to determine the corresponding
optimum team response for the other side. Fig. 2 shows a flow chart for the various steps in the
ULTRA algorithm. In the next section additional details about the ULTRA algorithm are
presented.

Figure 4.11 Flow chart of the ULTRA algorithm

Current Blue and Red Force Status

Reset Blue Unit Controls

Scan Through All Possible
Combinations of K Blue Units

Scan Through All
Possible Controls for the

Selected K Units

Simulate and Store Optimal
K Changes in Control

Did Any of Blue’s Units
Change Controls?

Yes

 Reset Red Unit Controls

Scan Through All Possible
Combinations of K Red Units

Did Any of Red’s Units
Change Controls?

Yes

No No

Store Blue and Red
Control Choices

No

Output Results
(Nash Solution)

Yes

Did Blue and
Red Repeat
a Previous
Control?

Scan Through All Possible
Controls for the

Selected K Units

Simulate and Store Optimal
K Changes in Control

SHARED Final Report

 48

Accomplishment 2: Development of ULTRA – An Efficient Search Algorithm for the Nash
Target Assignment Strategies

Nash strategy is often determined by successively calculating the reaction strategy of one team to
a given action strategy by the other team. Convergence of this iterative process will lead to the
Nash solution. Thus, each team needs to be able to calculate its reaction strategy to an action
strategy by the other team. ULTRA is an algorithm that calculates Nash strategies efficiently
even for teams with very large number of units.

To illustrate how this algorithm works, let us assume that the action strategy space for team B is
V and a specific action strategy is v V∈ . The search for team A’s optimal reaction strategy is
closely related to other similar combinatorial search problems such as the traveling salesman
problem. While not exactly analogous, some of the solution approaches to the traveling salesman
problem separate the complex combinatorial search into several smaller and simpler searches.
Similar ideas are also employed in search methods for functions minimization such as the
Relaxation Method, the Rosenbrock, the Hooke and Jeeves, and the Branch and Bound methods.
ULTRA is an iterative algorithm. As a starting point, it assumes that each unit in team A is
assigned an initial target. Let 0u be the strategy vector corresponding to that choice. A typical,
but not necessary choice is { }0 0,0,0...0u = . At iteration k, a modified strategy 1ku + is then
generated from ku according to a set of heuristics which insures that () ()1, ,k k

A AJ u v J u v+ >� � . This

iterative process continues until no allowable modifications of ku will yield a larger ()1,k
AJ u v+ � .

At this point the algorithm is assumed to have converged to the optimal reaction of team A to v� .
The success of this algorithm then depends on the heuristics which govern the way 1ku + is
generated from ku . In some sense, this is similar to the Rosenbrock, and Hookes and Jeeves
algorithms where a search for the optimum step size is performed separately along each of the
directions of the search space. Our target assignment problem is structured so that the units in
each team must be assigned targets from an identical set of options. To take advantage of this
structure, ULTRA generates 1ku + from ku by allowing only a fixed number of changes to the
targets of individual units, during each iteration k. Furthermore, this is to be done in an optimal
fashion. This can be represented by a two stage “nested” optimization procedure. The algorithm
must find both the units, as well as the corresponding changes to their targets, that yield the
maximum increase in the team objective function. Mathematically, this two stage optimization is
expressed as:

(){ }{ }
{ } { }

1 2 1 2, ,... , ,...,
max max ,

where 1,2,..., , 1,2,...,
and , , ,

F s s sF

k
As s s u u u

i

i j

J u v

F N s N
s s i j i j i N j N

∈ ∈
≠ ∀ ∋ ≠ ≤ ≤

�

In the above expression, F is the number of units in team A that may have their targets changed
at each iteration, and is is the index corresponding to the unit whose target is being changed. So
that the algorithm may generate the best possible assignments over a wide range of applications,
we allow the coefficient F to take values from the set{1,2,..., }N . We refer to this coefficient as
the degree of freedom of the algorithm. The value of F is typically chosen to balance the
accuracy and speed of the algorithm. A high value of F will yield an accurate but slow result and

SHARED Final Report

 49

the lower the value of F the less accurate but faster the result will be. In fact, when F=N,
ULTRA reduces to an exhaustive search algorithm. When the optimum values 1 2{ , ,.., }Fs s s and
the corresponding optimum targets

1 2

* * *{ , ,...., }
Fs s su u u are determined, the strategy at the next

iteration is set at:

1 1 2
*

1 2

, ,...
, ,...

k
k i F
i

i F

u i s s su
u i s s s

+ ⎧⎪
⎨
⎪⎩

≠=
=

As an illustrative example, consider the target selection in a problem where Team A has N=4
units and team B has M=3 units. We will illustrate how ULTRA is applied to obtain team A’s
optimal response to a given action strategy of team B, and with a search that has a degree of
freedom 1F = . The initial reaction strategy for team A is assumed to be { }0 0,0,0,0u = . At this
stage, as mentioned earlier, this strategy is chosen arbitrarily (although there are methods for
optimizing this choice). To find the next strategy 1u , the optimal 1s in addition to the
corresponding optimal 1su must first be found. This is done using a search over the allowed
subset of all possible strategies corresponding to a single target change. Mathematically, this

corresponds to the optimization problem described above represented by (){ }{ }
1 1

0max max ,
s

As u
J u v� .

Assume that the results of this search are that the optimal change is for unit 2 in team A to target
unit 3 in team B. Then

0
1

*

 2
3 2

i
i

i

u i
u

u i
⎧ ≠⎪= ⎨ = =⎪⎩

That is, the strategy at the next iteration will be { }1 0,3,0,0u = . The two-stage optimization is
then again repeated to find 2u , this time using the strategy 1u as the starting point. Assume that
this process is allowed to continue for several iterations and produces the following sequence of
optimum strategy changes:

{ }
{ }
{ }
{ }
{ }

1

1

1

1

1

* 2
1

* 3
1

* 4
1

* 5
1

* 6
1

4 1 0,3,0,1
3 2 0,3,2,1
1 2 2,3,2,1
3 1 2,3,1,1
1 2 2,3,1,1

s

s

s

s

s

s u u
s u u
s u u
s u u
s u u

= = ⇒ =
= = ⇒ =
= = ⇒ =
= = ⇒ =
= = ⇒ =

The process is stopped when it reaches an iteration at which it fails to produce a strategy which
improves upon the previous iteration’s strategy. In the above example, this occurs at iteration 6
(indicated by 6 5u u=). We should note, however, that this does not imply that a global optimum
is reached. The resulting strategy is optimal only in the sense that no single change of assignment
to one unit in team A can produce a higher value of (,)AJ u v . If a globally optimal solution is
desired, all units in Team A must be allowed to change their target selections at every iteration
(i.e. F=N), which would then correspond to an exhaustive search.

To illustrate the algorithm with a degree of freedom F=2, the two stage optimization will now be
performed over four variables instead of two:

SHARED Final Report

 50

(){ }
1 2 1 2

0
, ,

1 2

max max ,

, {1,...,4}
s s

As s u u
J u v

s s

⎧ ⎫
⎨ ⎬
⎩ ⎭
∈

�

An example of a sequence of iterations is as follows:

{ } { }
{ } { }
{ } { }

1 2

1 2

1 2

* * 1
1 2

* * 2
1 2

* * 3
1 2

{ , } {2,4} { , } 3,1 0,3,0,1
{ , } {1,3} { , } 2,1 2,3,1,1
{ , } {3,4} { , } 1,3 2,3,1,3

s s

s s

s s

s s u u u
s s u u u
s s u u u

= = =
= = =
= = =

Accomplishment 3: Open-Loop and Feedback Implementation of the ULTRA Controller

For a given number and type of units on each side, their values (or worth), and the probabilities
of kill against them, ULTRA calculates the optimum (in the sense of Nash) target assignments
for all units on one side against all the units on the other side. This is done for both the Blue and
Red units even though in the SHARED system only the assignments of the Blue units are used.
When the weapons are fired on the assigned targets, damage will occur on both sides. ULTRA
will then recalculate new target assignments based on the outcome (remaining health) of all units
on both sides, and so on. At the first step (k=0), ULTRA determines the target selections for both
Blue and Red units according to the designated task and Blue team composition determined at
the Team Composition and Tasking (TCT) level. A comparison of the computational
requirements of ULTRA and the exhaustive search algorithms is shown in Fig.3.

A block diagram illustrating an open-loop implementation of the ULTRA controller at the TDT
level is shown in Fig. 4. In this implementation, sensor information from the battlefield about
damage assessment is either not available or cannot be obtained. This could be due to several
reasons, including the breakdown of communication between the sensor UAVs and the TDT, or
possibly the destruction of the sensor UAVs. In this case, and without such information, ULTRA
will use an attrition model to predict the battle damages, and uses these predictions to calculate
the target assignments (controls) at the next step. Clearly, because of the probabilistic nature of
any attrition model used in this context, ULTRA’s prediction of the damages on each side could
be considerably different from the actual damages in the battlefield. Consequently, the resulting
target assignments at subsequent steps may not be the most effective. On the other hand, when
real time information from the battlefield about unit damage assessment are available and can be
transmitted to the algorithm, ULTRA can be implemented as a feedback controller as illustrated
in Fig 5. In this implementation, the unit damage information from the battlefield, which are fed
back to the algorithm at the end of every step, are used to calculate the target assignments at the
next step.

SHARED Final Report

 51

Figure 4.12 Computational Requirements of ULTRA vs. Exhaustive Search

Figure 4.13 Block Diagram of ULTRA Open-loop Controller

0

0.5

1

1.5

2

2.5

3

1 5 9 13 17 21 25 29 33 37 41 45 49
Number of Units Per Side (N=M)

Ti
m

e
to

 C
al

cu
la

te
 th

e
N

as
h

So
lu

tio
n

in
 S

ec
on

ds

1

1E+10

1E+20

1E+30

1E+40

1E+50

1E+60

1E+70

1E+80

1E+90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Number of Units Per Side (N=M)

Se
ar

ch
 S

pa
ce

ULTRA Search

Exhaustive Search

Designated Task

∑
ULTRA

Controller

Red Control

Blue Control Battle Field

Adversary

Red Control

Blue Damage Prediction

Red Damage Prediction

K=0

K=K+1

System Attrition Model

SHARED Final Report

 52

Feedback

Designated Task

∑
ULTRA

Controller

Red Control

Blue Control Battle Field

Adversary

Red Control

Blue Damage

Red Damage

K=0

K=K+1

System Attrition Model

Sensors

Figure 4.14 Block Diagram of ULTRA Feedback Controller

Accomplishment 4: Test Example on an OEP Scenario

In this section, we will illustrate the performance of the ULTRA algorithm on a test bed scenario
described in Fig. 6. In this scenario, it is assumed that the Red side (the enemy) is supported by a
neighboring country (red area 0) and is occupying Red areas 1, 2 and 3. Red has integrated its air
defenses into the neighboring country’s EW radars and C2 structures. These EW radars and C2
structures are deemed acceptable targets. The Blue force consists of a limited number of ground
forces and UAVs. The Blue base is centered at the Blue area 3 in Fig. 6 and other supporting
Blue forces can be deployed at Blue areas 1 and 2. The Red force has a limited number of long
range and medium range, surface-to-air missiles (SAMs). The strategic objective for the Blue
force is to protect the Blue operating base from attack by the Red surface-to-surface missiles
(SSMs) and armor; and to eliminate the Red SAM sites.

Figure 4.15 Scenario Battlefield

Blue Area 3

Red Area 2

Blue Area 1

Red Area 1
Red Area 0

Red Area 3

Blue Area 2

SHARED Final Report

 53

In order to compare the performance of the ULTRA open-loop and feedback controllers, we will
consider a specific detailed experiment performed in Red area 2. Suppose that one Blue team of
UAVs is dispatched to neutralize the ground forces and the integrated air defenses (IADs) in Red
area 2. The ground forces include tanks, personal carriers, communication vans, etc., and the
IADs include long range, medium range, and mobile SAM sites. The deployment of Red forces
in Red area 2 is shown in Fig. 6. A complete description including the initial equipment, the
number of units, the worth of units, the weapon types and quantities for each Red unit in that
area is given in Table 4.2. The Blue team, on the other hand, consists of a total of 11 UAVs: 3
UAVs equipped with large weapons (16 seeker missiles), 4 UAVs equipped with small weapons
(6 seeker missiles) and 4 UAVs equipped with small combos (4 seeker missiles). A complete
description of the Blue units is given in Table 4.3.

The objective functions BJ (u,v) and RJ (u,v) are given by

1 1

(,) () and () ()
BIK

B B
B B B i i

k i

J u v W k W k w p k
= =

= =∑ ∑ for the Blue team

1 1

(,) () and () ()
RIK

R R
R R R i i

k i

J u v W k W k w p k
= =

= =∑ ∑ for the Red team

where the worth values of units in the third column of Table 4.2 and Table 4.3 are used as
weighting coefficients B

iw and R
iw in the above objective functions. XI is the total number of units

for the force X, and ()X
ip x is the number of the remaining ith units in the force X at step k

(X=B(Blue),R(Red)). The ULTRA calculated open-loop target selections for the first four steps
for the Blue UAVs are given in Table 4.4. We implement these controls on the Boeing
Simulator. After the first round engagement, we observe that one communication van, four
SPARTYs and five personal carriers are destroyed as expected. However, we also see that four
tanks, instead of one tank in the first-step target selection, are destroyed after this engagement.
This is because the locations of those tanks are very close to each other and collateral damage of
other tanks may have taken place when a missile is fired at one tank in that location. It is not
surprising that, with no valid damage information available to the ULTRA (open-loop) controller
at this time, several Blue UAVs have been assigned certain tanks, which have already been
destroyed in the previous step, as targets at the next step. Consequently, the action of these Blue
UAVs attacking other important targets has been delayed and the weapons they fired at the
“destroyed” targets are apparently wasted. We also note that, after the first round, some UAVs
such as the ones labeled Small Weapon 1 and Small Combo 3 are shot down by Red IADs and
thus there should be no target selection possible for them at the next step.

SHARED Final Report

 54

Table 4.2 Red Force in Red Area 2

Blue UAVs in Team 1
(assigned to Read Area 2)

of Unit

(total = 11)

Worth of
each UAV

Weapon Type Weapon Quantity
Per Unit

Large Weapon 3 20 Seeker missile 16

Small Weapon 4 20 Seeker missile 6

Small Combo 4 20 Seeker missile 4

Table 4.3 Blue Team 1 assigned to Red Area 2

Red Unit (Red Area 2) # of Unit

(total=38)

Worth
of

each
unit

Weapon Type Weapon
Quantity

Per Unit

Long Range SAM sites (2 sites) 8 10 long_sam_missile 4

Medium Range SAM sites(6 sites) 6 7.5 medium_sam_missile 8

Tanks 10 10 tank_projectile 50

SPARTY 4 10 artillery_proj-ectile 100

Personnel Carriers 5 10 small_arms 20

Communi- cation Vans 1 10 Surface-to-surface_missile 4

Mobile SAM sites 4 7.5 medium_sam_missile 8

In the experiment where ULTRA has access to battle damage information, and the corresponding
controller is implemented in feedback form, the control choices for the first 4 steps are listed in
Table 4.5. We also implemented these controls on the Boeing simulator. This time, as we can see
in Table 4.5, the target assignment for the Blue units at the second step includes neutralizing only
those tanks that are still alive in the battlefield. After the second round, and upon detecting that
all the mobile SAM sites are destroyed, instead of predicting that only two of these are destroyed
as was the case in the open-loop control, the Blue UAVs are now able to save their weapons to
attack other important targets in the subsequent steps. Clearly, the feedback controller allows for
more reasonable decisions made by the Blue control in the battlefield provided that it has
accurate information about the current battle damage at each engagement step. Such information
plays a key role in the ULTRA feedback controller being able to derive target assignments for
the Blue force that actually make sense. For the purpose of comparison, snap shots of the final

SHARED Final Report

 55

outcomes after four steps using the open-loop and feedback ULTRA controllers are shown in
Fig.4.15. Note that with feedback, four Long-SAM-13 launchers, one medium SAM site, and all
the ground troops are destroyed. In addition, six Blue UAVs are preserved.

In contrast, in the open-loop case, only one Long-SAM-13 launcher is destroyed, and three Blue
UAVs are preserved. The partial outcome for the battle is given in Table 4.6.

We also compared the worth of the remaining Red force deployed in Red area 2 and the
remaining Blue force assigned to Red area 2 at the end of each round under open-loop and
feedback controls. These are shown in Fig.8 and Fig.9, respectively. The total worth of the Red
and Blue force at step k is given by (1). We note that the worth of the Red (or Blue) force when
using the ULTRA feedback controller is lower (or higher) than that of Red (or Blue) force when
using ULTRA open-loop controller as the battle progresses. This makes sense in that the
feedback controls usually have an advantage over the open-loop controls when unpredictable
conditions in the battlefield are present.

Table 4.4 ULTRA Open-Loop Target Assignments

Target Assignments (Control Output)
Blue UAV

1st step 2nd step 3rd step 4th step

Large Weapon 1 Communication Van Tank 2 Mobile SAM 3 No Target

Large Weapon 2 SPARTY 1 Tank 3 Mobile SAM 4 No Target

Large Weapon 3 SPARTY 2 Tank 4 Long SAM 13 launcher 1 No Target

Small Weapon 1 SPARTY 3 Tank 5 Long SAM 13 launcher 2 No Target

Small Weapon 2 SPARTY 4 Tank 6 Long SAM 13 launcher 3 No Target

Small Weapon 3 Personal Carrier 1 Tank 7 Long SAM 13 launcher 4 No Target

Small Weapon 4 Personal Carrier 2 Tank 8 Long SAM 12 launcher 1 No Target

Small Combo 1 Personal Carrier 3 Tank 9 Long SAM 12 launcher 2 No Target

Small Combo 2 Personal Carrier 4 Tank 10 Long SAM 12 launcher 3 No Target

Small Combo 3 Personal Carrier 5 Mobile SAM
1 Long SAM 12 launcher 4 No Target

Small Combo 4 Tank 1 Mobile SAM
2 Medium SAM 25 No Target

We are also interested in the net performance of the ULTRA controllers. The net performance
for the Blue force at step k is calculated according to:

() ()() () (0) () (0)B B R RNet k W k W W k W= − − −

SHARED Final Report

 56

The net performance for the Blue force is a measure of the total gain of the Blue force plus the
total loss of the Red force. We compared the net performance of the Blue force when controls are
implemented in open-loop and feedback forms. The results are shown in Fig. 4.18.

Table 4.5 ULTRA Feedback Target Assignments

Figure 4.16 Outcome with the Open-loop Controller (left). Outcome with the Feedback Controller (right)

Target Assignments (Control Output)
Blue UAV

1st step 2nd step 3rd step 4th step

Large Weapon 1 Communication Van Tank 5 Long SAM 13 launcher 1 No Target

Large Weapon 2 SPARTY 1 Tank 6 Long SAM 13 launcher 2 No Target

Large Weapon 3 SPARTY 2 Tank 7 Long SAM 13 launcher 3 No Target

Small Weapon 1 SPARTY 3 No Target No Target No Target

Small Weapon 2 SPARTY 4 No Target No Target No Target

Small Weapon 3 Personal Carrier 1 Mobile SAM
1 Long SAM 13 launcher 1 Medium SAM 25

Small Weapon 4 Personal Carrier 2 Mobile SAM
2 Long SAM 13 launcher 2 Medium SAM 25

Small Combo 1 Personal Carrier 3 No Target No Target No Target

Small Combo 2 Personal Carrier 4 Tank 8 Long SAM 13 launcher 4 Medium SAM 25

Small Combo 3 Personal Carrier 5 No target No Target No Target

Small Combo 4 Tank 1 No target No Target No Target

Long range SAM13

Medium range SAM25

Blue UAVs

SHARED Final Report

 57

Table 4.6 Partial Outcome of the Battle in Red area 2

Initial Number of Units
With Open-Loop

Controller

With Feedback

Controller

8 long sam launchers 1 destroyed 4 destroyed

6 medium sam sites 0 destroyed 1 destroyed

11 UAVs 3 preserved 6 preserved

Figure 4.17 Worth of Red Force deployed in Red Area 2

Rounds

0

50

100

150

200

250

300

350

0 1 2 3 4

No Feedback Control

Feedback Control

SHARED Final Report

 58

Figure 4.18 Worth of Blue Force Assigned to Red Area 2

Figure 4.19 Net Performance for Blue Force

As we expected, the net performance of the Blue force tends to improve with feedback as the
battle progresses. However, this was not the case for the open-loop controller.

0
20
40
60
80

100
120
140
160
180
200

0 1 2 3 4
Rounds

Feedback Control

Open-Loop Control

0

50

100

150

200

250

0 1 2 3 4
Rounds

Feedback Control

No Feedback Control

SHARED Final Report

 59

Accomplishment 5: Comparison of Nash and Naïve (Random or Greedy) Strategies
It is often said that when a team of fighting units targets a team of enemy units, a random or unit
greedy targeting strategy will perform as well as - if not better than - a targeting strategy
determined based on some game-theoretic analysis. Our work on this topic shows that this is not
the case, especially if the enemy is intelligent, employing a carefully designed strategy. We
consider two teams of non-homogeneous fighting units simultaneously targeting each other. On
each side, we consider three targeting strategies: (1) A random strategy where the units on each
side randomly select their targets; (2) A unit greedy strategy, where each unit selects the specific
target on the other side that it performs best against; and (3) A team Nash strategy which
guarantees for the team as a whole, that the other team’s performance will deteriorate if it
doesn’t also use a team Nash strategy. In some sense, the first two strategies can be viewed as
uncoordinated, naïve, unit-based strategies; and the third as a coordinated, smart, team-based
strategy.

In order to compare the performance of these three strategies we first need to consider a model
for the objective functions. If we let X

xa denote the worth of unit x in Team X (A or B) for team
A, X

xb denote the worth of unit x in Team X for team B, and ,
X
x yp denote the probability of kill of

unit x in Team X against unit y in Team Y , then a general form of the objective functions for
the two teams will be:

() (), ,
1 11 1

(,) 1 1
M NN M

A B B A
A i j i j j i j i

i jj i

J u v a p i v a p j uδ δ
= == =

⎡ ⎤ ⎡ ⎤= − − − − −⎣ ⎦⎣ ⎦∑ ∑∏ ∏

() (), ,
1 11 1

(,) 1 1
N MM N

B A A B
B i j i j j i j i

i jj i

J u v b p i u b p j vδ δ
= == =

⎡ ⎤ ⎡ ⎤= − − − − −⎣ ⎦⎣ ⎦∑ ∑∏ ∏

Note that these objective functions as are constructed such that the worth of a unit may differ
from one team to the other. For example, the worth of unit i in team A is A

ia for team A and
A

ib for team B.

This gives the possibility of considering both zero-sum and non zero-sum objective functions. In
the above, the term ()p qδ − is the Kronecker delta defined by

0 if
()

1 if
p q

p q
p q

δ ⎧
⎨
⎩

≠
− =

=
,

and is used to indicate that unit q in one team has been assigned to target unit p in the other
team. Essentially, these expression can be interpreted that the objective of each team is to
maximize the expected worth of its surviving units while simultaneously minimizing the
expected worth of the surviving units on the other side (or maximizing the expected destruction
of units on the other side).

As a specific numerical example, we consider a problem with 10 units on each side
(10M N= =). We assume that the worth of the units are for 1, 2,...,10A A

i ia b i i= = =
and for 1, 2,...,10B B

i ia b i i= = = . We chose this distribution of unit worth so as to make the unit
greedy strategy a meaningful strategy by allowing for a wide range of worth of units on each
side. With this choice, the objective functions represent a zero-sum situation. The total initial

SHARED Final Report

 60

worth of each team is
10

1
55A A

i
i

a a
=

= =∑ and
10

1
55B B

i
i

a a
=

= =∑ . We performed 25,000 Monte Carlo

optimization runs with probabilities of kill ,
A
i jp and ,

B
i jp uniformly distributed over an interval

[,p q]. Tables 7 and 8 below show the percentages of total remaining worth on each side after
six rounds of targeting, for all 9 possible combinations of target assignment strategies and for the
two intervals [,p q] = [0, 1] and [,p q] = [0, 0.5].

Table 4.7 Percentage of Total Worth Remaining on Each Side at the End of Battle with [p,q] = [0, 1]

 Red Strategy

 Random Unit Greedy Nash

Random
Blue: 27.7%

Red: 27.7%

Blue: 6.8%

Red: 26.2%

Blue: 0.0%

Red: 58.0%

Unit Greedy
Blue: 26.0%

Red: 6.9%

Blue: 5.7%

Red: 5.6%

Blue: 0.0%

Red: 35.3%

Blue Strategy

Nash
Blue: 57.9%

Red: 0.0%

Blue: 35.3%

Red: 0.0%

Blue: 6.1%

Red: 6.0%

Table 4.8 Percentage of Total Worth Remaining on Each Side at the End of Battle with [p,q] = [0, 0.5]

 Red Strategy

 Random Unit Greedy Nash

Random
Blue: 42.5%

Red: 42.3%

Blue: 20.1%

Red: 43.7%

Blue: 1.2%

Red: 61.3%

Unit Greedy
Blue: 43.6%

Red: 20.2%

Blue: 21.0%

Red: 21.1%

Blue: 1.5%

Red: 37.9%

Blue Strategy

Nash
Blue: 61.4%

Red: 1.2%

Blue: 38.0%

Red: 1.5%

Blue: 12.8%

Red: 13.0%

Based on these results, we can draw the following conclusions: (1) when one does not know
what the enemy’s targeting strategy is, the Nash strategies are far superior than the other two. (2)

SHARED Final Report

 61

Using a random targeting strategy could lead to disastrous results especially if the enemy is
intelligent, using a smart targeting strategy such as the Nash strategy. The entire team can easily
get wiped out if a random targeting strategy is employed. (3) The more effective the force is (i.e
the higher the probabilities of kill) the higher the incremental improvements of the Nash strategy
will be over other two strategies. This implies that the stronger the force is, the more emphasis
should be placed on planning.

4.4 CPPP Accomplishments

The CPPP accomplishments are mainly in two forms: Theory and implementation/simulation.

4.4.1 Accomplishments on Theory

(The list below only includes some highlights we have achieved on theory. More theoretical results and detailed
description are in the publications listed at the end of this report.)

 Adopt a methodology which treats the scenario of interest as a multi-objective cost
function profile and views the UAV groups from biological perspective. Ref.[cppp-3].

 Develop a first-order dynamic model for each UAV and prove the stability of the
interconnected multi-agent system in terms of cohesiveness. Ref.[cppp-6].

 Apply foraging theory in cooperative path planning and study its cohesion properties in a
stability-theoretic framework. Ref.[cppp-7].

 Construct a general swarm model with uncertainty with each agent having double-
integrator dynamics. We show the advantages of social behaviors over non-social one
and obtain theoretical results in both continuous and discrete time case. Ref.[cppp-10].

 Investigate a model of multi-UAV system with limited sensing capability and obtain
explicit conditions for the system to stay cohesive. Ref. [cppp-11].

4.4.2 Accomplishments on Implementation/Simulation

 Advantages of social foraging over non-social foraging, i.e., cooperation over non-
cooperation, are shown by simulation results and theoretical results are verified (Fig.
4.20).

 Three dimensional path planning algorithm is developed and implemented in OEP test-
bed. Good performance on terrain tracking is demonstrated. Performance of
implementations on different models, a cellular automata model and a continuous motion
dynamics model, are compared (Fig. 4.21).

SHARED Final Report

 62

Figure 4.20 Comparison of cooperation against Non-cooperation

Figure 4.21 3D Path Planning with Different Implementations Typical terrain tracking simulation results

from OEP Dynamic Model (upper) and Automata Model (lower). Desired altitude: 400m AGL

N=1 N=36

SHARED Final Report

 63

 Algorithms capable of accommodating constraints on UAVs flight dynamics and
performing full path generation are developed (Fig. 4.22).

 A heuristic algorithm dynamically adjusting threat effect (DATE) is developed to
improve the path planning performance, which eliminate the problem of UAVs getting
“trapped” in local optimum and also take time constraints into consideration (Fig. 4.23).

 System integration is accomplished (Fig. 4.24).

 Integrated with TDT to perform "local" simulation for efficient algorithm development
and verification.

 Interface developed to integrate with Shared Domain Model.

Figure 4.22 Algorithm for Handling Flight Dynamics

SHARED Final Report

 64

Figure 4.23 Algorithm for Dynamically Adjusting Threat Effects

Figure 4.24 System integration diagram

SHARED Final Report

 65

4.5 CPPS Accomplishments

CPPS Accomplishments have been achieved along 4 avenues.

-The first avenue of technical accomplishment is in the probabilistic modeling of the search
environment. A cognitive map, which is defined as an array of equal area cells whose boundaries
correspond to areas of the search environment, is then utilized to manage this model. Uncertainty
management is rendered into probabilistic terms, for each potential target, by defining several
important events, each of which depends on a known or quantifiable probability. Each cell of the
map stores information about what is known about the area of the environment that it covers. For
any target, let event Fx be the event that that a potential target is detected in cell x, Tx be the
event that that target truly is in cell x, and E be the event that that potential target is really a target
(i.e. isn’t just a glitch in the sensor, or a false target.) Some of these events are given (such as a
sensor producing a Fx event) and some represent events about which uncertainty is associated
(such as Tx). This type of Bayesian formulation allows information to be captured both as a
priori information (or commander intuition) or as the result of observations in a dynamic and
noisy environment.

Storing these probabilistic values efficiently on the cognitive map can be done using the concept
of relative probabilities. The probability of a target being within a cell (Tx) is given by P, while
the relative probability is given by C. The relationship between the two is given by

1

i
i i ix

x xN i
xx

CP V C
C

=

= =
∑

where i denotes the target index number and N is the number of cells of the map. If a sensor
reports the location of a target, this is recorded onto the cognitive map. However, if the sensor
returns a negative sensor report, the uncertainty of the area that was searched has decreased, and
the cells representing the area that has been searched (i.e. had a sensor pass over them) must be
updated. This update equation is given by

' (1)i i
x xC C ρ= −

where the prime indicates a posterior value and ρ is the sensor efficiency of the acting sensor.
The sensor efficiency measures the probability that a sensor will miss a potential target when it
should have detected it. This relative probability formulation produces a much more efficient
updating algorithm than updating P directly, since only cells that have been searched are
updated, instead of every cell of the map. Observations from multiple sensor types can use the
same update equation, just with different parameters.

Next, a measure of desirability for searching any cell is defined (σ). This value represents the
expected number of targets to be found upon searching a cell. This can be given by

SHARED Final Report

 66

∑
∀

=
i

i
x

ii CVx }{)(ρςσ
,

where ζ is the probability of the target not being a sensor glitch or false target. This value can
then be used to determine which cells are better to search, and also produce a quantifiable
amount by which they are better to search.

-The second avenue of research accomplishment is in the probabilistic modeling of the threat
environment. A UAV would want to avoid an area where it may be damaged or destroyed, i.e.
the area contains some sort of threat. This threat could come from the terrain itself (i.e. a vehicle
can crash into mountains, trees, building, etc.,) from small arms ground fire (if the UAV’s
altitude is too low,) or from Surface to Air Missle (SAM) sites. In order to adequately capture the
nature of threats and terrain, a 3-D model of environment was created. This involved creating
several more cognitive maps (which are 2-D grids of equal area cells.) One map stores the terrain
height (or reads it in from a DTED file,) one map stores the altitude at which ground fire
becomes a threat, and one map stores information on the location and parameters of SAM sites.

Figure 4.25 A Cross Section of a SAM Threat Radius

The threat to a vehicle can be calculated at any point by the values on these maps.

⎩
⎨
⎧

≤
>

=
gu

gu
a aa

aa
d

1
0

 ,

gives danger from terrain, where the altitude of the UAV is au and the altitude of the ground is
ag.

⎩
⎨
⎧

≤
>

=
fu

fu
b aaF

aa
d

0

SHARED Final Report

 67

gives the danger from ground fire, where the lowest safe altitude from ground fire is given by af
and F denotes the probability of being destroyed by the ground fire in one time step.

⎪⎩

⎪
⎨
⎧ >

=
otherwiseT

arr
d

j

u
j

s
j

u
j

)(0

gives the danger from SAM sites. In this equation, rj

u is the distance from the point directly
below the vehicle to the SAM site, rj

s is the minimum safe distance from the SAM site at a
particular altitude, and Tj is the probability of being destroyed by the SAM site over one time
step. The total threat to a vehicle can be found by

])1()1)(1[(1
1

∏
=

−−−−=
NT

j
jba dddd

 ,

where NT is the number of SAM sites.

-The third accomplishment of CPPS is the implementation of a Dynamic Programming algorithm
that utilizes the information from the first two areas and produces the paths that the vehicles will
follow. At each time step, there are 5 decisions that a vehicle must choose from. This is showed
in the following diagram.

Figure 4.26 5 Decisions of a UAV at Each Time Step: Turn Left or Right, Ascend, Descend, or Go Straight.

The planning algorithm attempts to optimize not only the current decision, but also the future
decisions, using a Dynamic Programming recursion:

)}),(({),((max)(1 kkkkkUukk uxfJEuxgxJ
k

+∈
+=

,

where Jk is a cost-to-go function from the time step k to the end of the planning horizon, U is the
set of choices a vehicle can make at a time step, uk is the choice a vehicle makes at time k, xk is
the state of the system at time k, and f(xk,uk) gives the state (i.e. xk+1) that results when a vehicle
makes choice uk at state xk. As the curse of dimensionality makes this computationally very
difficult to solve over the entire vehicle’s lifetime, an optimal result is produced for only a
smaller rolling planning horizon. The information about the search gain and the level of threat
are used in this decision as terms in the single-step gain function g(xk,uk). This is defined as

SHARED Final Report

 68

){),(kkkkk IEuxg δσ=
where k is the time step index, σ is as defined above, δ is computed from the threat map using

∏
=

−=
k

i
ik d

1

)1(δ

and I is a cooperation aspect. The value of I is calculated using a template to predict where other
vehicles will be.

plan time = t plan time = t+1 plan time = t+2
Figure 4.27 A Depiction of How Vehicles Predict Where Another Will Be. (The shaded regions represent a

positive probability that another vehicle will be in the area.)

Thus, the decision process is decentralized, and, while requiring communication, does not
require negotiation. Each vehicle acts on the information available to it. If all the vehicles have
the same information, they will all produce the same results, but in the case where
communications are not ideal, each can still function in a near optimal fashion.

-The fourth accomplishment is in the area of the implementation architecture and integration
with the rest of SHARED. Figure 4.28 shows a diagram of the architecture used to implement the
CPPS algorithm. In this figure, white denotes an agent, green denotes an information base.

Figure 4.28 The Modular Architecture of CPPS

SHARED Final Report

 69

In this architecture, several software agents were created, each one to handle one aspect of the
problem. The planning agent houses the actual algorithm that produces the paths. The search
map handler agent maintains the cognitive map where the target information is stored, and
provides the search gain for a particular area to the planning agent. The threat map handler
maintains the cognitive maps where the threat information is stored, and provides the level of
threat for a particular area to the planning agent. The Majordomo is an agent that simply
performs housecleaning functions, and directs incoming or outgoing information to the proper
agent. This architecture is modular both internally and externally to CPPS. The internal
modularity allows for development and refinement of each part of CPPS as the research
progressed. (For example, it would be possible to refine the methods used to store target
information without disrupting the work on threat avoidance.) The external modularity allows
easy integration with the other SHARED modules, and, at the same time, the ability to function
in other testbeds as well. Such a testbed was developed in-house to test the algorithms in order to
improve performance of this module, and (since CPPS is part of the whole,) the performance of
the entire SHARED hierarchy.

2 1. 5 1 0. 5 0

x 10
5

 3

 2.5

 2

 1.5

 1

 0.5

x 10
5

meters

m
et

er
s

Scenario Envinroment

Figure 4.29 A Trial from Using CPPS in an In-house Test Bed

The solid black line shows the outline of the search area, which can take on any polygonal shape.
The large blue dashed circles represent areas being threatened by SAM batteries. The small red
dashed circles represent the uncertainty areas associated with potential targets. Each target is
known to be within the uncertainty area, but its exact location is unknown. The colored lines that
bend and twist around are plots of each vehicle’s path. It is possible, even in this abbreviated
mission, to see the vehicles searching out the targets, and avoiding the threatened areas.

SHARED Final Report

 70

Figure 4.30 A Trial from Using CPPS as Part of the SHARED Test Bed

This picture shows some UAV’s on a protect mission (which uses the CPPS module.) The
protect mission sends the vehicles out to search for unknown hostile forces in the area. These are
modeled as potential targets that have an uncertainty region of the protected area. One can see in
this figure that the small, fast UAV’s are spreading apart to search the area more efficiently. (The
larger UAV’s will do so, too, but they are just moving more slowly.)

4.6 SHARED System and VIA Accomplishments

The SHARED system is for use by commanders to manage a task situation involving a number
of SEAD, Close Air Support, Interdiction, and Protection missions using a single squad of 36
UAVs, in a situation in which multiple semi-autonomous agents are participating in the control
decisions. The high-level use case for the system is shown on the next page.

The basic use case for the SHARED system, shown below, includes a single human, the squad
commander, who is in command of a squad of UAVs. At the highest level, he is involved in a
use case designated Approve/Modify Situation and Processes. Other agents involved in the
system are the C4ISM, which provides the external reality; the Situation Agent, which creates
and maintains a hierarchical interconnected representation of the battlefield situation; the
Interaction Agent, which creates and maintains the human-system interaction required by the
situation; the UAV Vehicle Control, which performs the low level flight control; the Team
Composition and Tasking Agent, which performs task planning by forming teams, assigning
them to missions, and weaponizing individual UAVs for each squad; the Dynamics/Tactics
Agent, which performs target nomination, attack ordering, and weapon allocation for each team;
the Cooperative Path Planner, which performs flight planning for each UAV; and the
Cooperative Search Planner, which performs flight planning for search activities. External agents
are called by objects in the situation representation whenever they need the services of those
agents.

SHARED Final Report

 71

Figure 4.31 Basic Use Case for the SHARED System

The high level sequence of operations of the SHARED software is shown below. When the
commander invokes the software, the situation agent is invoked. The situation agent connects to
the simulation, collects the IPB, and creates and maintains the situation throughout the life of the
active software. When a complete situation model is formed, the TCT, then the TDT, then the
AID system are called to perform initial planning and create the initial user interface.

Commander
Starts SHARED

Connect
To C4ISIM

Simulator
 Data

Situation
Representation

Create
Situation

Collect
IPB

Call TCT

Call TDT

Call AID

Maintain
Situation

Invoke
Situation Agent

Situation
Agent

Figure 4.32 High Level Sequence of Operations of the SHARED Software

SHARED Final Report

 72

The SHARED software is fully operational. The architecture of the SHARED system is shown
below. On the left, a number of external planning agents are called as necessary by objects
located within a central representation of the current situation. This situation representation is
created and maintained under control of a Situation Agent. A set of agents (the Interaction
Agent and the Presentation Agent) that design and present user interfaces are combined to form
the Automated Interaction Designer (AID). The function of the AID software is to generate
required human and system interactions for the domain of autonomous vehicle control, including
the results of other automated reasoners that are part of the SHARED program. AID dynamically
produces user interfaces to the situation, as appropriate to the human user’s current needs.

Figure 4.33 Architecture of the SHARED System

Object-oriented models provide the knowledge base for the situation agent and the AID agents.
The Domain Model, under control of the situation agent, provides the semantic basis for
interaction design, allowing control system independence and an object-oriented representation
of control system components. The hierarchical, task-driven Interaction Model, driven by the
interaction agent, provides the design knowledge required for automatic composition of
appropriate tasks and abstract interactions, allowing dynamic application of the principles of
usability engineering to support the design of the interactions between people and systems. The
Presentation Model, driven by the presentation agent, possesses knowledge about how to select
and format concrete user interfaces to express interaction designs, allowing hardware and
operating system independence, and a clear separation between abstract interactions and concrete
interfaces.

Under the control of their respective software agents, each model is used as an exemplar
database to produce dynamic models of the ongoing situation, the current interaction design, and
the current presentation. An object-oriented Situation Representation, containing a
representation of the system’s situation in the real world, is created from the domain model. All

Semantically-Rich
Situation

Representation

TCT
Agent

C4ISim

CPP
Agent

Generated Software

TDT
Agent

Game-Theoretic
Plan Reasoners

Model-
Based

Semantic
Reasoners

Situation
Agent

Display
Agent

Interaction
Agent

Interaction Design

User Interface Design

SHARED Final Report

 73

interaction participants share the dynamic situation representation, ensuring shared knowledge
for grounded collaboration. The interaction agent starts the design process for a particular user
by creating an interaction object, which specializes itself using a compositional productive
process to create an Interaction Design. The presentation agent (under the direction of the
interaction agent) selects the appropriate presentation model for the currently accessed device
(CRT/keyboard or handheld, in the current systems). It uses the objects in the presentation model
as templates, selects and specializes them as necessary, and presents the Interaction Design as an
Interface Design. As the user interacts with the situation through the generated user interface, or
as the situation changes, the entire automated interaction design system continues to dynamically
support the necessary user-system conversation. The TCT, TDT, and CPP reasoning modules are
invoked as necessary by situation representation objects (task processes, mission processes,
teams, and UAV controllers).

4.6.1 Domain Model Detailed System Design

This section presents the detailed system design information for situation modeling component
of the SHARED system, including situation agent, the domain model, and the generated situation
model.

The Domain Model contains things and data. Things are subclassed to discriminate between
Physical Objects, Organizations, Situations, Information, Input/Output Systems, and Processes.
The domain model is a hierarchical organization of class types, with the classes organized into
semantic networks and containment hierarchies when they are instantiated to match an object in
the real world. The schema for the domain model is shown below. All of the classes in the
schema, except Data and Action, are subclasses of Thing.

SHARED Final Report

 74

Figure 4.34 Schema for the Domain Model

The situation representation is dynamically created from the objects defined in the domain
model. Using the types in the Domain Model, instances are created to make up the Situation
Representation, including the objects, data, actions, and relationships in the situation, using the
Factory Paradigm of maintaining a library and creating instances when needed. The semantics of
the situation are contained in the situation representation. The initial situation is created from the
Intelligence Preparation of the Battlefield (IPB) information supplied by the simulator, and is
kept current through dynamic linkage between the situation model and the simulation.

As the above diagram shows, the root object in a situation representation is the Operation
Situation, which hierarchically contains the task situation that is being managed by the
commander. In addition, the operation situation contains the places and groups that are
participating in the operation. These types of objects are hierarchically composed of Systems,
Equipment, and Actors. Situations (at all levels) also contain processes, which in turn are
composed of activities. Activities may have associated plans, and may be assigned to specific
Actors (the “performer” of the activity).

The situation representation is a dynamic model of all of the entities currently participating in the
situation, and includes software objects (of the types shown in the schema, as appropriate) that
are semantically interconnected and which reflect the state of their referents in the real world.
For example, an equipment object representing each UAV is created, with appropriate capable
actions (Fly, Sense, Attack, etc.) and appropriate data (fuel consumption rate, current speed) and
parts (path planning agent, communications system, throttle) for each UAV in the control
system. In addition, the UAV might have a controller (an Actor, human or otherwise, that
controls its behavior), and be part of a larger system or group, like a squad. That group is part of
an operation, and the UAV’s controller may be participating in any number of processes at any
level, and may be planned to perform any number of activities in those processes.

Operation Situation

Activity

Place

Equipment

System

Group

Actor

Plan/Info

Data

Action

= subpart

= relation

performer

controller

Task Situation

Operation Process

Mission Situation

Task Process

Mission Process

SHARED Final Report

 75

When the SHARED application is invoked, it creates a Situation Representation by calling the
OperationSituation. The operation initiates a connection to the simulator (Sim), reading
information that allows it to create a theater, blue forces, and a default mission with the
necessary Task and Mission Situations and Processes in the situation model.

Roads are currently the only hardcoded information used in the system. The information
available from the Boeing simulator is used to create the Molian boundaries, Northern Neighbor
boundaries, Blue Government and its controlled areas, an AirWing with a Squad with 36 UAVs,
a human squad commander, and Molian Rebels and their controlled areas, with any known
components. In addition, some unit type information is acquired from the simulator, and used to
set the default values of some domain classes’ data values. The information acquired from the
simulator is summarized in the following table:

Table 4.9 Information Acquired from the Simulator

Sim Type Name Domain Classes Domain Properties

PlatformType LargeUAV
SmallUAV
WideBodyISR
Tanker

myMinimumSpeed
myMaximumSpeed
myWeaponCarryCapacity
myMeanTimeToRepair
myMaximumVerticalRate

DefensiveType AAGuns
ShortSAM
MediumSAM
LongSAMLauncher

myReactionTime
myRadarRange
myReloadTime

WeaponType GPSBomb
SubMunitions
SeekerMissile
AntiRadiatiomMissile

myMaximumRange
myWeaponSpeed
myCEP
myCarryCapacityUsed

The current version of the SHARED system supports a single operation situation containing a
single task situation. Task Situations contain the entire picture of the battlespace as it involves a
squad of UAVs. Task situations may contain a number of mission situations involving teams in
that squad. Mission Situations are defined for SEAD, Close Air Support, Interdiction, and
Defend Blue (Offensive Counter Air is not included at this time).

An example of the composition of the top layer of a situation representation, expressed as an
operation situation, is shown below.

SHARED Final Report

 76

Situation

Process

Activity

Place

Equipment

System

Group

Actor

Plan/Info

Key

Suspected

Action

Theater

Red Area of Control #1

Blue Area of Ctrl

Operation Situation

Task Situation

Enemy Mobility

Kill/NoKill Zone RoadRoadRoad
Building RoadRoadTruck

Red Area of Control #1 Red
Ground
Troops

Terrorist Network

Ground
Forces

SSM System

TEL

TEL Support

Ground Force

Trucks

SPARTYs

Tanks

Tanks

ROE

Air Defense System

SearchRadarTrackRadars

SAMs

LSAM FCS MSAM Sites

C2 FacilsESMs

EWRadars

Blue Government

Air Wing Squad

ISR TCT

Blue Area of Ctrl

Commander
HSI System

AID

UI Console

TDTTeam 1

Ground Sys

UAV

CPPP

UAV Ctrl

WeaponWeapon

SensorsSensor

Enemy Aggression Enemy Objectives

Weather Terrain

Operation
Process

HSI

Command

Monitor

Define

Analyze

Configure

MoM

ROE MoM

ROE MoM

Protect?

Tanker

BuildingBuilding

ProtectedArea

TankerTanker

CPPS

DecoyDecoy

AAAs

APCs

Ground
Forces

Figure 4.35 An Example of Operation Situation

In addition to containing lower level situations, situations contain corresponding execution
processes: operation situations contain operation processes, task situations contain task
processes, and mission situations contain mission processes.

The operation situation contains information about the theater, the blue government, the enemy,
the activities required to manage the operation situation, and a number of objects that represent
the high level picture of enemy intent. These include the commander’s guess at enemy mobility,
enemy aggression, and enemy objectives. Enemy objectives include (expressed as attributes of
the high level Operation Situation object):

• Opponent Objectives: Neutralize SEAD, Attack Blue Bases, Attack Blue Ground
Forces

SHARED Final Report

 77

• Opponent Mobility: (default = 50%) commander’s guess at mobility of opponent

• Opponent Aggressiveness: (default = 60%) commander’s guess at opponent’s
aggressiveness

Theater information contains information about theater-wide kill zones, roads, weather, terrain,
and white buildings and vehicles.

The information about the blue forces is hierarchically arranged inside of the blue government
object, which contains definitions of the blue areas of control and representations of the air wing
components, including the individual UAVs. In SHARED, an air wing is made of an ISR system
and a squad. The squad is composed of a commander, some tankers, some UAV teams, a TCT
agent, and a human interaction system. Each team has a TDT agent, and each UAV has a CPPP
agent for path planning and a CPPS agent for search planning. In addition, UAVs possess a UAV
Controller and decoys, weapons, and sensors. The HSI system is made up of an AID agent (to
design and present the required user interfaces) and an interaction console.

The information about the red forces is organized into red organizations (TerroristNetwork),
which possess red enemy areas, each with objectives and red systems. The Network also
possesses a GroundTroops that contains enemy ground systems. Objectives possible for each red
area include: SEAD, Interdiction, and Close Air Support, and are set by the situation if red
equipment is seen on the IPB, but are available to the user for manual objective setting. Red
areas may contain the following types of equipment systems, corresponding to objectives for that
area: air defense system, ground force system, and surface-to-surface missile system. Red ground
force equipment systems may also be added to the force itself if it appears outside of a delimited
red area.

Equipment Systems contain equipment of particular kinds, documented in the table below,
created based on the IPB. In addition, each system may have any number of suspected equipment
objects, initially set to 0 but changeable by the human user. Each system also has an ROE and
guidance associated with it. ROE is exclusively set to TCT (time critical target; default for air
defense systems), KZ (attack only in designated kill zones; default for ground force systems),
Hostilities, or No Strike (to exclude a system from attack). Guidance includes measure of merit
(set by default to the values indicated in the challenge problem description) and the ability to de-
select a particular type of equipment.

SHARED Final Report

 78

Table 4.10 Documented Equipment Systems

Equipment
System

Domain
Components

Simulator Names Hardness
Category

Air Defense
System

AAGuns
ShortSAM
MediumSAM
LongSAMLauncher
FireCtrlRadar
SearchRadar
SAMTrackingRadar
EWRadar
ESMEquipment
C2Equipment

aaa_site_type
short_sam_site_type
medium_sam_site_type
long_sam_launcher_platform_type
long_sam_fire_control_platform_type
long_sam_search_radar_platform_type
long_sam_tracking_radar_platform_type
ew_radar_site_type
red_esm_type
c2_facility_type

Light Armor
Light Armor
Light Armor
Light Armor
Light Armor
Light Armor
Light Armor
Light Armor
Light Armor
Structure

Ground Force
System

Tank
SelfPropelledArty
APC
MilitarySupplyTruck
MilitaryLiquidTruck
MobileC2
MobileHeadQtrs

tank_type
SPARTY_type
personnel_carrier_type
red_supply_truck_type
red_liquid_transport_type
communications_van_type
mobile_HQ_type

Heavy
Armor
Heavy
Armor
Heavy
Armor
No Armor
No Armor
Heavy
Armor
Heavy
Armor

SSM System TELSSMLauncher
TELSupport

tel_type
TEL_support_type

Light Armor
Hard
Structure

SHARED Final Report

 79

Task Situation

Collateral Restriction Mission Situation: SEAD

Task Process

Task
Planning

Task Plan

Command

Monitor

Define

Analyze

Configure

Team Assignment

Weapon Allocation

Team List

Target List

Asset List

Assignment List

Mission Process List

Stage List

Identification Reqr

Guidance
Mission Situation: CAS

Mission Situation: Defend

Mission Situation: Interdiction

Figure 4.36 An Example of the Composition of a Task Situation

An example of the composition of a task situation is shown on the left. The task situation is the
level that contains all the missions for the squad, the guidance and intent for the squad, and the
high level monitoring, command, and planning activities that are part of the task process for the
entire squad.

Information associated with the task situation that expresses command input include whether or
not there are restrictions on collateral damage, what level of identification certainty is required,
and whether or not to include certain mission types.

The default process for an operation situation is automatically created and filled with activities,
as is the default process for task situations (except for military activities, which are determined
by the TDT). Mission situations are automatically filled with mission processes. The human
commander may exclude processes from each area.

There are currently two categories of mission processes: Offensive Process and Defensive
Process, with three types of offensive processes currently defined (SEAD, CAS, and
Interdiction). One mission process of each type is created for each area. For example, with the
SEAD objective for area 3, the Mission Situation for IADS will contain an Offensive mission
execution process, which contains all the activities necessary to perform SEAD in that area.

The number of Mission Situations and Mission Processes in a task situation is limited. Mission
situations are created for each type of objective in a task situation, so they are limited to 4:
SEAD, Interdiction, CAS, and Guard. The maximum number of processes in each situation is

SHARED Final Report

 80

equal to the number of red or blue areas; an Offensive Mission Process for each red area for
SEAD, CAS, or Interdiction mission situations, and a Defensive Mission Process for the Protect
Blue mission situations.

Mission processes are filled with targets in response to known or actual enemy objects in specific
areas, and are intended to represent one team of UAVs against a specific type of system in a
particular area. As part of the task process, the task plan contains a list of the mission processes,
as well as the start times of each and the team assigned to perform it (set, as described below, by
the TCT agent).

The figure below shows an expansion of the mission situation for SEAD into a number of
offensive processes, and shows the details of the activities created within one offensive process.

Figure 4.37 Expansion of the Mission Situation for SEAD

Mission Situation: CAS

Mission Situation: SEAD

Mission Situation: Interdiction

Offensive Process: Destroy Area 1 IADS

Command
Attack

Shoot

Offensive Process: Destroy Area1 TELs

Offensive Process: Destroy Area 2 IADS
Offensive Process: Destroy Area 3 IADS

Fly

Route Planning

FlyAction

RoutePlan

Sense

AimSensor

Locate
Locate

LocateLocateLocateJamLocateLocateRefuel

Monitor

Define Analyze

Configure

Mission Planning

Mission Plan

WeaponsAssignments

AssetSet

Route Plans

TargetSetActivitySet
FlyAction

Route
Planning

SHARED Final Report

 81

The details of a defensive process model are shown below.

Figure 4.38 Details of a Defensive Process Model

Each type of process (operation, task, or mission process) is defined as being made up of a set of
activity objects, like command, fly, sense, attack, monitor, plan a route, or evaluate a plan. As
part of the task situation, the task processes needed to represent the unfolding task are created,
and automatically filled and assigned to appropriate actors (see below). In the same way, as part
of the creation of a mission situation, the mission processes required to perform each mission
situation are created and assigned.

The number of activities in a mission process is unlimited and will fluctuate as the situation
changes. Activities are created for the human commander (Monitor, Command, Evaluate Plan,
Define, etc., as appropriate to the level [operation, task, or mission]). Activities are also created
for the automation (the TCT agent is assigned the Task Planning Activity, AID is assigned all
Human-System Interaction Activities, the TDT agent is assigned the Mission Planning Activity,
and the CPP agent is assigned the Route Planning Activity).

Military Activities can only be performed by UAVs, and are not created by the situation, but by
the TDT based on the needs of the situation. The Military Activities include: Fly, Attack, Sense,
Locate, Jam, Protect, and Refuel. Based on the targetlist derived from IPB, the TDT defines
Attack (with accompanying FlyTo activities), Sense, Refuel, etc. activities for each target. These
activities are then created in the situation representation and added to the mission process.

Objects in the situation representation automatically react to the changes in the situation as
indicated by simulator values, and objects and context are created and destroyed as necessary to
provide a semantically rich picture of the actual situation. The situation model actively and
dynamically performs target evaluation, creating missions and mission targets as necessary, for
assignment by external agents like the TCT and TDT. Each situation type knows what sort of
targets needs to be included in a process, subject to commander’s guidance, objectives, and ROE.

Mission Situation: Defend

Defensive Process: Protect Blue Area 1

Defensive Process: Protect Blue Area 2

Command
Attack

Shoot

Fly

Route Planning

FlyAction

RoutePlan

Sense

AimSensor

LocateLocateLocateLocate

LocateLocateLocateJam

LocateLocateRefuel

Monitor

Define Analyze

Configure

Mission Planning

Mission Plan

WeaponsAssignments

AssetSet

Route Plans

TargetSetActivitySet
Locate

Protect

FlyAction

Route
Planning

SHARED Final Report

 82

Activities currently belong to the MissionProcess in which they were created, and they also, if
assigned, sit on a list in the UAVController. When called upon to do something for the next time
step, the UAVController goes through this list and takes appropriate action for all In Process
activities, marking them Complete if needed. It finds the first Scheduled activity, tries to execute
it, and marks it Complete or In Process as appropriate. If the simultaneity rules allow it, the
controller moves to the next activity.

The actors defined in the SHARED system include the Human and a number of automated actors
(TCT, TDT, CPP, AID, and the UAVController). Each Actor object knows what kinds of
Activities it can perform, and tracks these types in its myCapabilities property, summarized
below.

Table 4.11Summary of Capabilities of Each Actor Object

ActorObject type Capabilities

Human CommandControlActivity, MonitorSitn, DefineActivity,
AnalysisActivity, ConfigurationActivity, RoutePlanning,
MissionPlanningActivity, TaskPlanningActivity,
WeaponAllocationActivity, TeamAssignmentActivity

UAVController FlyTo, ProtectActivity, SenseActivity, Refuel, JamActivity, Attack

AIDAgent HumSysInteraction

TCTAgent TaskPlanningActivity, WeaponAllocationActivity,
TeamAssignmentActivity

TDTAgent MissionPlanningActivity

CPPPAgent RoutePlanning for FlyTo Activities

CPPSAgent RoutePlanning for Protect Activities

SHARED Final Report

 83

Conversely, each Activity tracks a preferred type of Actor to perform that Activity.
Table 4.12 Preferred Type of Actor Tracked of Each Activity

Activity type Preferred Actor type

HumSysInteraction Human

CreativeActivity Human

MilitaryActivity UAVController

RoutePlanning CPPPAgent

MissionPlanningActivity TDTAgent

TaskPlanningActivity TCTAgent

WeaponAllocationActivity TCTAgent

TeamAssignmentActivity TCTAgent

Task Planning Activity. At the Task Situation level, each task process has a task planning
activity that contains a Task Plan. During creation of the task situation, the following data
structures are created automatically as part of the task plan:

• MissionExecutionsList: Vector of MissionExecutionProcess

• TargetList : Vector of systems that are targets for offense or defense

• Assets: UAVs in this squad

The targetlist is the total list of red equipment targeted within all of the task’s missions. Red
equipment is considered as a target based on the current guidance, objectives, and state of the
situation. Because this information doesn’t fully satisfy the task planning activity, the agent
assigned to this activity (generally the TCT) is called to finish the activity. It performs the
functions of allocating the squad members into teams (one team for each Mission Process,
although individual UAVs may be members of multiple teams over different stages),
determining the weapons requirements for each UAV, and determining ordering of Mission
Processes.

The TCT is given a reference to the OperationSituation, and a reference to the TCT process
representation inside that OperationSituation domain representation. The information sent to the
TCT Agent can be visualized as in the diagram below: The TCT creates or modifies the
following data structures in the task plan:

• TeamList : Vector of FlightGroups and their UAVs and their weapons

• AssetSet: Vector of UAVs in the team

• Assignments : Vector of TaskAssignment

SHARED Final Report

 84

The TaskAssignment structure associates items as follows:

• aMissionProcess : MissionProcess

• assocTarget : System in an Area

• myStartTime : TimeData

• assocTeam : FlightGroup

In response to this plan, flight group objects are created in the squad and filled in appropriately.
Although the current TCT is not capable of this, it is also possible for a TCT function to create
and destroy various mission processes to create a more efficient situation. The inputs and outputs
to the external C++ TCT code are documented in the Java Documentation for the SHARED
software.

Mission Planning Activity. At the Mission Situation level, each mission process’ mission
planning task contains a Mission Plan that contains the specific activities that will be performed
(generated by the TDT based on the types of targets), the start time of each activity (inferred
from the ordering of activities provided by the TDT agent for the team as described below), the
UAV assigned to the activity (set by the TDT agent for the team), the weapons used for each
activity (the UAV’s suite of weapons is set by the TCT agent for the squad, and the specific
allocation of weapons against activities is set by the TDT agent), the target of each activity (set
by the TDT), and the route for each activity that involves movement (set by the UAV’s CPP).

The following is automatically created on the mission plans for each Mission Process in each
mission situation:

• TargetSet: Vector of targets (equipment) for this Mission Process

Because the mission planning task for each particular Mission Process is assigned to the TDT for
that team that is responsible for the Mission Process, the TDT is called, returning the following
information:

• ActivityList : Vector of Activities

• Assignments : Vector of Assignment (one each activity)

The MissionAssignment structure associates items as follows:

• anActivity : Activity

• aTarget : the target Tangible object of this activity

• assocWeapons : Vector of Weapons for this UAV for this activity, if any

• assocUAV : UAV

• myStartTime : TimeData

The TDT performs the functions of creating appropriate activities for each target and assigning
them to UAVs in an ordered list, along with setting any sensor or weapon selections and
parameters.

The table below describes each of the Military Activities, and the parameters that must be set by
the TDT for that activity, the rules about simultaneity (when the next scheduled activity is called
by the UAV Controller), and the criteria that govern the completion of that activity

SHARED Final Report

 85

Table 4.13 Description of each Military Activity

Activity Associated
Equip

Duration Target Other
Parameters

Simultaneity Completion
Criteria

Attack ARM, Seeker,
GPSBomb,
Submunition,
or Decoy

No
duration.

An
equipment
unit

 Next activity
started when
weapon fired.

Marked complete
when weapon fired

Sense GMTI, SAR,
EOSensor

.

No
duration.

An
equipment
unit

GMTI: area to
cover (4
doubles)

SAR/EO: size
(1,2,3),
resolution
(1,2,3)

Next activity
started when the
sensor is pointed.

Marked complete
when duration
expires or simulator
indicates sense action
is complete.

Protect None (CPPS
points sensors)

Duration of
the stage in
which
activity is
planned.

A
Protected
Zone
outside of
a blue
area.

 Next activity
started when
duration expires.

Marked complete
when duration
expires.

Locate None (CPPS
points sensors)

Maximum
duration of
the activity

A suspect
equipment
unit

 Next activity
started when
locate is
complete

Marked complete
when duration
expires or when the
targetlist changes.

Refuel None

Duration of
refuel

A Blue
Tanker

 Next activity
started when the
duration expires.

Marked complete
when duration
expires.

Jam None

Duration of
the
jamming

An
equipment
unit

 Next activity
started when the
jammers
activated.

Marked complete
when duration
expires.

FlyTo None

Duration of
flight
(maximum)

A
Tangible
unit

Latitude,
Longitude,
Altitude of
destination

Next activity
started when the
flyto is
completed.

Marked complete
when duration
expires or when the
UAV is located
within the
effectiveness of the
weapon or sensor
selected for the next
action, or the UAV
has reached the
Protected Zone, or
when the destination
has been reached

SHARED Final Report

 86

When the simulation is running, new red units in areas of interest will be evaluated according to
the guidance and ROE, and new targets will be assigned to the mission’s targetlist. When the
targetlist changes, the team may automatically call the TDT for replanning; old activities will be
destroyed and new activities and assignments will be created as set by the TDT. The team will
also track the asset UAVs on the team, and call the TDT for a replan when the asset list changes.

The timing of calling external agents is shown in the Java Documentation for the SHARED
software. Automatic triggering of TDT replanning for a team occurs when a new item appears on
the targetlist for the mission, the asset list for the team changes, or a set amount of time has
elapsed. All of these parameters are under commander control. The inputs and outputs from the
external C++ TDT modules are documented in the Java documentation for the SHARED
software.

Flight Path Planning Activities. Because the CPP for a particular UAV is assigned the route
planning activity, the performance of an activity requiring route planning causes the
UAVController to invoke the CPP, which writes the following to each of the mission plans that
the particular UAV participates in:

• Routes : Routeplan for next segment

The CPP modifies in each MissionAssignment structure:

• assocRoute: route for next leg of this activity

When the UAVController is processing a Protect or Locate activity, it checks whether it has a
team name. If it does not have a team name, it needs to create a team name and find all the
cohorts for this team. While doing so, it fills in its cohort’s team name field and its cohort’s
cohort list. Each UAVController keeps track of its current team name and its team cohorts. To
create the team name, the UAVController uses the current number listed as a class property of
UAVController, and then increments the number. To find the team members (cohorts), the
UAVController looks through all the Protect activities in the same MissionProcess as its Protect.
If the target of that Protect is the same as the target of its own Protect or find it adds the
performer of that activity to the cohort list. After creating the cohort list, it assigns both the team
name and the cohort list to each member on the cohort list. The internally implemented (Java)
CPP-P is called for FlyTo activity planning. The CPP-S is called as an external module for all
Protect activities. The inputs and outputs to the external C++ CPP-S are documented in the Java
documentation for the SHARED software.

The algorithm for the CPPP module is contained in the Java CPPPAgent class and documented
in the Java Documentation for the SHARED software. The algorithm compares 8 possible future
positions (each one time step away) and chooses the one with the best score based on its
proximity to the current goal and the threat posed by known enemy units. If the UAV has not
recently made progress the weight given to the threat scores is reduced. The exact score
calculations are shown in the Java documentation.

Roles. Roles are used as the communication mechanism between the situation model and the
interaction design system. Roles that are shared between objects in different modules define the
affordance dependencies between them; for example, a particular type of view is defined as
affording a particular type of object or information, and certain types of elements afford the
display of certain types of data. The use of roles provides independence between the various

SHARED Final Report

 87

modules to allow the automatic interaction designer to make design decisions based on situation
semantics.

There are four main types of roles that connect the interaction and the domain: object roles,
usage roles, information roles, and representation roles. The interactions between these roles and
the domain and interactions systems are shown below, and each is discussed separately.

Figure 4.39 Interactions between the Roles and the Domain and Interactions Systems

Representation roles provide the ability to determine the appropriate Element to represent each
DataObject. Domain data statically possess individual representation roles, which describe the
basic type of data they represent. For example, the State Data domain class possesses the role
Boolean, and the Text Data class possesses the role String. Elements in the Interaction Model
also possess statically assigned roles, which describe the type of data they afford. For example, a
State Element has the Boolean Role.

Interaction Views may define their components generically, as abstract Interaction Elements.
When the view is instantiated, it selects its components by selecting the object and usage roles it
affords, then selects the specific element to represent the data based on the representation role of
that data. For example, a State Data, embodying the Boolean role, is represented in the
interaction design by a State Element, which affords the display of Boolean information.

Artifacts have Object Type Roles that are statically pre-assigned. These roles provide ability to
constrain detail and visualization subviews. When composing itself, each view may select
elements to represent only certain object type roles. The VisualizationView shows objects having
OrganizationRole or ThingRole, while the InformationView shows objects having the
InputOutputRole.

Domain artefacts possess object roles based on their supertype. For example, a Human takes an
“Actor” role. Interaction views afford certain object roles by selecting the objects to include
based on their roles. For example, the visualization view has a referent that has an object role of

Interaction Element

Interaction View

static

static

assigned
by artefact

static

static
static

Domain Model Interaction Model

Object Role

Usage Role

Representation
Role

Domain Data

Artefact

static

Roles

Information
Role

Activity
static

static

SHARED Final Report

 88

SituationRole, and selects the parts of the referent with a PhysicalObjectRole to display in the
visualization view.

Usage roles are assigned dynamically to a Data situation object by the Artefact domain object
that owns it. The usage role assigned to a data object represents how the data’s owner uses the
data, regardless of the type of information that data represents (boolean, string, continuous, etc.).
For example, an object’s name has an Identity Usage Role and its location has a Location Usage
Role. Interaction Views are predefined to afford certain usage roles. For example, the
Specification View shows information about an object that has any of the following roles:
parameter, value, or setter. Usage roles provide the ability to reveal or hide different types of
information about objects by coding the “use” of a particular piece of data for its owner object.
Data usage roles are exclusive (each data has only one).

Information roles are statically assigned to Interaction Views and Domain Activities, to allow the
required views to be generated for tasks. The information role of a view indicates what
information type it affords, while the information role of an activity defines its information
requirements. For example, the Command Information Role is afforded by the Specification and
Command Interaction Views, and is required by the Command/Control activity.

4.6.2 Interaction Model Detailed System Design

This section provides the details of the organization and operation of the interaction model, the
interaction agent, and the interaction design.

The SHARED system supports the human side of mixed-initiative interactions explicitly by
integrating multiple software agents (like AID) that can automate certain activities, and
automatically assigning all activities that don’t have capable software agents to the human. It
supports variable initiative interaction by allowing the human to investigate information about all
activities they are capable of, and providing interactions to support those capabilities. In this
way, the human commander can easily and efficiently over-ride or modify the behavior and
guidance of the software agents who are effectively part of his team.

SHARED Final Report

 89

Theater

Blue Area of Ctrl

Operation Situation Terrorist Network

Blue Government

Air Wing Squad

ISR TCT

Blue Area of Ctrl

Commander
HSI System

AID

UI Console

TDTTeam 1

UAV

CPPP

UAV Ctrl

WeaponWeapon

SensorsSensor

Operation
Process

HSI

Command

Monitor

Define

Analyze

Configure

TankerTankerTanker

CPPS

DecoyDecoy

Task Situation

Task Situation

Task Process

Task
Planning

Task PlanCommand

Monitor

Define

Analyze
Configure

Team Assignment Weapon Allocation

Mission Situation: SEAD

Offensive Process: Destroy Area 1 IADS

Command

Attack

Sense

AimSensor

Locate

LocateLocateLocateJam

LocateLocateRefuel

Monitor

Define Analyze

Configure

Mission Planning

Mission Plan

Route
Planning

Locate

Fly

Route
Planning

Figure 4.40 Diagram for Interaction Model

Because the AID system is responsible for providing interaction support for all of the activities
assigned to the human actor in the situation, the Interaction Model automatically creates views
for each of the creative activities, and each interaction level is filled with the objects that appear
in the situation. Each view in AID is defined in terms of the activities it facilitates; the views are
automatically selected to match the activity needs, and each view automatically fills itself based
on the status of the situation. Because the human commander is defined as being capable of all
but the military activities, most of the activities present in the situation are automatically
available to him through the user interface. “Backup” activities, however, are not given the
prominence that is given to the activities assigned to the commander. Any automation level is
available to the commander at any time if he chooses to intervene, or if an external reasoner
becomes disabled or is unavailable. In this way, the full spectrum of autonomy is supported, and
the commander has full control of any component at any time.

The creation of a user interface to meet the interaction needs of the human is driven by the

SHARED Final Report

 90

assignments and responsibilities of the user. The situation representation contains the objects and
relationships that express these needs: as shown in the diagram above, the user is assigned to
monitor the task situation (made up of missions), command the entities involved, and evaluate
the plan. A diagram showing the default assignments of activities to the human commander is
shown to the left. Lines between the commander and an activity indicate that those activities are
assigned by default to a human user.

The diagram below illustrates some of the relationships in the situation representation that
support automated interaction design. The HSI system is made up of a UI Console (which is part
of the user’s available equipment set) and the AID Agent. AID’s assigned activity is the Human-
System Interaction Activity, focused on the task situation that the human is responsible for. In
this way, the AID agents have access to rich semantic information about the situation and the
user’s place in that situation, allowing them to reason about ways to meet the interaction needs
that result.

Figure 4.41 Examples of Relationships in the Situation Representation

Interaction Model. The interaction model is made up of four hierarchical levels, each composed
of objects from the next lower level:

• Interaction Design Agent: represents the entire interaction design

• Interaction Views: represent information that is chunked for a specific interaction
purpose

• Interaction Elements: represent the discrete entities the user interacts with, like
situation elements (planes, valves) and interaction components (sets of exclusive
choices, forms)

Operation Situation

Blue Government

Air Wing Squad Commander

HSI System

AID

UI Console

Operation
Process

HSI
Task Situation

User

Assigned
Activity UI System

Available Equipment

Focus

Responsibility

SHARED Final Report

 91

• Interaction Primitives: the smallest parts of interactions; the individual labels,
values, icons, and selectors.

The classes in the Interaction Model are shown below.

Figure 4.42 The Classes in the Interaction Model

What views
required?

Generated
UI

Interaction
Agent

Presentation
Agent

Create Views

Views
Self-Compose

Design
Presentation

Invoke
AID

Complete?
Interaction
Requests

Presentation

Situation
Needs/Roles

Figure 4.43 General Flow of the Interaction Design Process

The most abstract class in the Interaction Model is InteractionObject, which has the parameters
myComponents, myContainer, myReferent, myName (inherited by all interaction model classes).
Individual views are selected by the Interaction Agent based on the active tasks for the user by
matching the Activities currently assigned to the user with the info roles of the available views in
the interaction model. Views are also created for all other activities that are necessary to support
the user’s capabilities.

SHARED Final Report

 92

The interaction model in AID is a self-composing productive system. When an instance of any
interaction object is created for a particular user and a particular domain object (the referent of
the interaction object), that instance is responsible for adapting to the communication needs of
the referent and the user. The interaction model uses internal rules and constraints based on
current practice in task analysis, requirements management, and interaction design, as
appropriate to the responsibilities of each object. The general flow of the interaction design
process is shown above.

Interaction objects also select their sub-components for the specific context, based on
appropriateness to the situation and the user. Each subcomponent then tunes itself by selecting
and tuning its own subcomponents. Using this process of self-composition, an entire interaction
(or only the parts that need to be changed) is created or modified in real time when needed. Each
interaction design is specialized dynamically to suit the user, the objects in the real world, the
interaction devices, and the required tasks. In use, each design dynamically responds to user
input (or changes in the system) by redesigning specific parts of itself, as needed.

The objects in the hierarchical Interaction Model are used to create the Interaction Design for the
current situation and user. The Interaction Design Agent selects views to match current tasks, the
views create elements to match their roles, the interaction elements create primitives for each
part of themselves, and the primitives set their values appropriately to represent the object, data,
or action.

Specification View

StaticElement: “Heading”

StaticElement: “Speed”

StaticElement: “FuelGauge”

StaticElement: “FuelRate”

NumberElement: “SpeedSetting”

ValuerPrimitive: value = “0”
LabelPrimitive: category = “Speed Setting”
LabelPrimitive: unit = “kph”
ValuePrimitive: min = “0”
ValuePrimitive: max = “8000”
ValuePrimitive: decimal = 0
MoverPrimitive: “Adjusters”
TextEnterPrimitive: “ValueEnter”

LabelPrimitive: category = “Heading”
LabelPrimitive: unit = “degrees”
ValuePrimitive: value = “0”

Figure 4.44 An Example Portion of an Interaction Design

SHARED Final Report

 93

The full interaction design is a hierarchical structure, with views that contain elements and
elements that contain primitives that have all variables filled. An example portion of an
interaction design is shown above. This example is a partial design for a Specification View for
an aircraft. The heading, speed, fuel gauge, fuel rate, and speed setting data have been selected
for inclusion because they all have the usage role of parameter when associated with an aircraft.

 The Number Element was selected to represent the Speed Setting data because speed is
represented by a continuous data object with the representation role of “number”, which is the
same role held by Number Elements. Each data property of the speed setting is represented as
part of the number element, using the appropriate primitives; for example, value primitives are
used to represent current value, minimum value, maximum value, and the decimal places, while
a text enter primitive is used to represent the editable nature of this value.

4.6.3 Presentation Model Detailed System Design

The presentation model is separate from the interaction model and the interaction design, in
order to provide adaptation to multiple types of user interface devices, and to separate user
requirements from the physical satisfaction of these requirements. For example, on a CRT-based
system, the presentation model converts the interaction design into a presentation by selecting
user interface components like windows (to enclose the interaction), frames (for views), and
widgets (for elements). The presentation components are then specialized according to the
parameters of the objects in the situation. In addition to the device-specific knowledge about
translation from interaction objects to presentation objects, each presentation model also contains
a number of heuristics that specify how to select and specialize presentation objects, and how to
code and present the interaction object information (for example, how to line up widgets, add
appropriate status coding, and represent objects symbolically or textually).

SHARED Final Report

 94

5 Research Required

This section summarizes the work still required on each of the SHARED modules.

5.1 TCT Research Required

Currently, TCT estimates the time for each stage based on the equations we provided. How to
schedule the whole mission in an optimal way is still under consideration. Specifically, Rule
Based sequencing needs to be further developed.

The preliminary allocation is based on the proportional control. Distributed resource allocation
with different dynamics still needs to be developed in order to deal with more complicated
situations.

Moreover, the functionality position of TCT in the situation as cooperative player and non-
corporative player has been noticed in SHARED. Further analysis on how to design this type of
player in the situation is required. In the short term, simplified (super-real time) simulation
capability is also advocated.

5.2 TDT Research Required
5.2.1 TDT-Hierarchical

We recognize that considerable additional effort is required to refine our present TDT-
Hierarchical. We have identified the following research enhancements required:

 Estimation Intent of the adversary.

 Consideration of the different cultural and social idiosyncrasies

 Implementation of adaptation of ordinal game for interfacing with human commanders

 Further details heuristic based upper level planning in hierarchical TDT

 Computation strategies for non-zero-sum games

 Other jamming deployment strategies and algorithm

5.2.2 TDT-ULTRA

Additional effort would have resulted in considerable improvement of the TDT-ULTRA. Some
of our plans and research requirements have included the following topics which remain
unfinished:

 Continue to upgrade and test ULTRA. Additional features that could have been
considered include:

o Estimation of enemy intent.

o Other jamming and decoy control strategies.

o 3-D information in Blue target selection in ULTRA.

SHARED Final Report

 95

o Adaptive adjustments of parameters in cost functions.

o The effects of asymmetric collateral damage weights.

 Continue to perform experiments using ULTRA with

o Red Controls ignored.

o Red Controls determined based on a Zero-Sum game.

o Red Controls determined based on a Nonzero-Sum game.

 Continue to investigate ULTRA with distance discount factor for:

o Specific target selection by sub-teams of UAVs

o Specific target selection by scattered individual UAVs

 Perform Experiments on sensor-based BDA with sensor UAVs having partial information
about the battlefield.

 Game theoretic approach is essential in battle management in future combat systems.
More emphasis should be placed on it.

 The game approach becomes more effective if there is a mechanism for estimating the
enemy’s intent. Very few results are available in this area.

5.3 CPP Research Required
5.3.1 CPPP

CPPP adopts a gradient-climbing approach to perform path planning. This approach has the
advantages of good scalability, low computation burden, and low memory requirements and
complexity, which facilitate on-board implementation. But it also has the disadvantage of easy to
get "trapped" in local optimum in a resource profile. The DATE algorithm developed by us could
overcome the problem, but at a cost that en route safe UAV-to-threat distance is not guaranteed.
The algorithm could be enhanced via the idea of tube generation, selection, and following.

Also currently a heuristic approach is adopted to handle the case when time constraint exists. It
would be desirable to determine the flight path with a theoretical approach, in which other
physical constraints, including fuel consumption, fitness of UAVs, and so on, may also be
accommodated relatively easily in the framework.

Moreover, to determine the conditions under which the UAV team achieves cohesion when time
delays and asynchronism exist in a communication network is also very important since
generally their impact on the system performance is significant in reality.

5.3.2 CPPS

Further research would have refined the performance of the existing algorithms. Such research
would have included incorporating heuristics and learning methods (e.g. utilizing simulation
methods such as Neuro-Dynamic Programming) in the planning algorithm to enhance search
efficiency in terms of increased planning ability (e.g. through better information utilization) and
decreased computational load. It also would have included improving the control of the sensors,
including the ability to position sensors independently of vehicle motion and the control of

SHARED Final Report

 96

multiple sensors. This entails the development of control strategies (for both sensors and vehicle
paths; and cooperative and single-UAV sensor control) to maximize the payoff of sensor use
while maintaining a feasible computational load. Further research would also have meant
conducting more experiments, both inside and outside of the SHARED system (using modularity
to ensure improved performance in the SHARED system.) Additionally, methods to incorporate
moving targets would have to be included in any additional research in order to cover that aspect
of the problem. The probabilistic nature of the target information base was expected to have
made this relatively easy.

5.4 VIA Research Required

Now that we have achieved a robust software system to embody SHARED, our third year MICA
efforts were intended to emphasize algorithm improvement and extension of human interaction
into the lowest levels of human interaction in the plan. Currently, the human commander may
affect the plan through expression of suspicions, ROE, and guidance, and has full control over
automated replanning triggers. But, he cannot now directly manipulate the elements of an
automated plan (“assign this activity to that UAV rather than this one” or “fly through this
corridor rather than that”). Introducing these capabilities reveals a number of issues involving
overlapping areas of responsibility and involves intricate plan dependency parameters that we are
eager to investigate. In addition, numerous improvements to both the models and the reasoning
employed in the domain and the interaction generators is anticipated as the technology evolves,
along with APIs for user interaction designers, agent developers, and domain model
maintenance.

SHARED Final Report

 97

6 References and Standards

1. Ahlstrom, V. and Longo, K. (2001) Human Factors Design Guide Update (Report Number
DOT/FAA/CT-96-01): A Revision to Chapter 8- Computer Human Interface Guidelines. US
Department of Transportation, April.

2. Ahlstrom, V., Longo, K., and Truitt, T. (2002) Human Factors Design Guide Update (Report
Number DOT/FAA/CT-96-01): A Revision to Chapter 5- Automation Guidelines. US
Department of Transportation, February.

3. Builder, Carl H., Banks, Steven C., and Nordin, Richard (1999) Command Concepts: A
Theory Derived from the Practice of Command and Control. Washington, D.C.: National
Defense Research Institute/RAND.

4. Freeman, J. and MacMillan, J. (2002) Mixed initiative control of robotic systems. 2002
Command and Control Research and Technology Symposium, Monterey, California, June
11-13.

5. Galitz, W. (1997) The Essential Guide to User Interface Design. New York: Wiley.

6. Landauer, T. (1995) The Trouble with Computers. Cambridge, Mass.: MIT Press.

7. Mandel, T. (1997). The Elements of User Interface Design. New York: Wiley.

8. Mayhew, D. (1999) The Usability Engineering Lifecycle. San Francisco: Morgan Kaufman
Publishers.

9. National Research Council (2000) Uninhabited Air Vehicles: Enabling Science for Military
Systems. Washington, D.C.: National Academy Press.

10. Nielsen, J. (1993) Usability Engineering. Boston: Academic Press.

11. Rosson, M and Carroll, J. (2002) Usability Engineering. San Francisco, Morgan Kaufmann
Publishers.

12. Y.F.Wang, J.B.Cruz, Jr.,and J.H.Mulligan, Jr. (1990) Two Coding Strategies for
Bidirectional Associative Memory, IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 81-92,
March.

13. B.Kosko (1988), Bidirectional Associative Memories, IEEE Trans. Syst. Man, Cybern., vol.
18, no. 1, pp. 46-60, January.

SHARED Final Report

 98

7 Publications
7.1 TCT Publications

[TCT-1] Yaodong Pan, Tankut Acarman, and Umit Ozguner, "Nash Solution by Extremum
[TCT-1] Y. Pan, T. Acarman, and U. Ozguner, "Nash Solution by Extremum Seeking Control
Approach," Proc. of the 41st IEEE Conference on Decision and Control, Las Vegas, NV,
December 10-13, 2002, pp. 329-334.

[TCT-2] L. Xu and U. Ozguner, “Battle Management for Unmanned Aerial Vehicles”, Proc. of
the 42nd IEEE Conference on Decision and Control, Maui, HI, December 9-12, 2003, pp. 3585-
3590.

[TCT-3] Yaodong Pan and Umit Ozguner, “Sliding Mode Extremum Seeking Control for Linear
Quadratic Dynamic Game”, Proc. of the 2004 American Control Conference, Boston, MA, June
29-July2, 2004.

7.2 OSU TDT Publications

[OSUTDT-1] J. B. Cruz, Jr. and M. A. Simaan, "Ordinal Game Theory and Applications - A
New Framework For Games Without Payoff Functions, Proc. of the 2002 Mediterranean
Conference on Control and Automation, Lisbon, Portugal, July 9-12, 2002, CD-ROM
(#474.pdf).

[OSUTDT-2] G. Chen and J. B. Cruz, Jr., "Genetic Algorithm for Task Allocation in UAV
Cooperative Control," Proc. of the 2003 AIAA Guidance, Navigation, and Control Conference,
Austin, Texas, August 2003.

[OSUTDT-3] D. Garagic and J. B. Cruz, Jr., "An Approach to Fuzzy Noncooperative Games,"
Journal of Optimization Theory and Applications, Vol. 118, No. 3, September 2003, pp. 475–
491.

[OSUTDT-4] Yong Liu, M. A. Simaan, and J. B. Cruz, Jr., “Game Theoretic Approach to
Cooperative Teaming and Tasking in the Presence of an Adversary,” Proc. of the 2003 American
Control Conference, Denver, CO, June 4-6, 2003, pp. 5375-5380.

[OSUTDT-5] J. B. Cruz, Jr., G. Chen, D. Garagic, X. Tan, D. Li, D. Shen, M. Wei, and X.
Wang, “Team Dynamics and Tactics for Mission Planning”, Proc. of the 42nd IEEE Conference
on Decision and Control, Maui, HI, December 9-12, 2003, pp. 3579-3584.

7.3 Pittsburgh TDT Publications

[PITT-1] J. B. Cruz, Jr. and M. A. Simaan, “Ordinal Game Theory and Applications – A New
Framework for Games Without Payoff Functions,” Proc. of the 2002 Mediterranean Conference
on Control and Automation, Lisbon, Portugal, July 9-12, 2002, CD-ROM (#474.pdf).

SHARED Final Report

 99

[PITT-2] Yong Liu, M. A. Simaan, and J. B. Cruz, Jr., “Game Theoretic Approach to
Cooperative Teaming and Tasking in the Presence of an Adversary,” Proc. of the 2003 American
Control Conference, Denver, CO, June 4-6, 2003, pp. 5375-5380.

[PITT-3] D. Galati, Yong Liu, and M. A. Simaan, “A Fast Algorithm for Unit Level Team
Resource Allocation in a Game Environment,” Proc. of the 42nd IEEE Conference on Decision
and Control, Maui, HI, December 9-12, 2003, pp. 2872-2877.

[PITT-4] Yong Liu, D. Galati, and M. A. Simaan, “Team Dynamics and Tactics in SHARED,”
Proc. of the 42nd IEEE Conference on Decision and Control, Maui, HI, December 9-12, 2003,
pp. 3561-3566.

[PITT-5] Yong Liu, “Nash Based Strategies for the Control of Extended Complex Systems,”
Ph.D dissertation, University of Pittsburgh, October 2003.

[PITT-6] Yong Liu and M. A. Simaan, “Noninferior Nash Strategies for Multi-Team Systems,”
Journal of Optimization Theory and Applications, Vol.120, No.1, January 2004, pp. 29-51.

[PITT-7] Yong Liu, D. Galati, and M. A. Simaan “Nash Strategies with Distance Discount
Factor in Target Selection Problems”, Proc. of the 2004 American Control Conference, Boston,
MA, June 29-July2, 2004.

[PITT-8] Yong Liu, D. Galati, and M. A. Simaan, “A Game Theoretic Approach to Team
Dynamics and Tactics in Mixed Initiative Control of Automa-teams,” Submitted to the 43rd IEEE
Conference on Decision and Control, Paradise Island, Bahamas, December 14-17, 2004.

[PITT-9] D. Galati and M. A. Simaan, ‘Effectiveness of the Nash Strategies in Competitive
Multi-Team Target Assignment Problems,” Submitted to the 43rd IEEE Conference on Decision
and Control, Paradise Island, Bahamas, December 14-17, 2004.

7.4 CPPP Publications

[CPPP-1] V. Gazi and K. M. Passino, “Stability Analysis of Swarms in an Environment with an
Attractant/Repellent Profile,” Proc. of the 2002 American Control Conference, Vol. 3, May 8-10,
2002, pp. 1819-1824.

[CPPP-2] V. Gazi and K. M. Passino, “Stability Analysis of Swarms,” Proc. of the 2002
American Control Conference, Vol. 3, May 8-10, 2002, pp. 1813-1818.

[CPPP-3] V. Gazi and K. M. Passino, “A Class of Attraction/Repulsion Functions for Stable
Swarm Aggregations,” Proc. of the 41st IEEE Conference on Decision and Control, Las Vegas,
NV, Vol. 3, December 10-13, 2002, pp. 2842-2847.

[CPPP-4] V. Gazi and K. M. Passino, “Stability Analysis of Social Foraging Swarms: Combined
Effects of Attractant/Repellent Profiles,” Proc. of the 41st IEEE Conference on Decision and
Control, Las Vegas, NV, Vol. 3, December 10-13, 2002, pp. 2848-2853.

[CPPP-5] Yanfei Liu and K. M. Passino, “Biomimicry of Social Foraging Behavior for
Distributed Optimization: Models, Principles, and Emergent Behaviors,” Journal of
Optimization Theory and Applications, Vol. 115, No. 3, December 2002, pp. 603-628.

[CPPP-6] V. Gazi and K. M. Passino, “Stability Analysis of Swarms,” IEEE Transactions on
Automatic Control, Vol. 48, Issue. 4, April 2003, pp. 692–697.

SHARED Final Report

 100

[CPPP-7] V. Gazi and K. M. Passino, “Stability Analysis of Social Foraging Swarms,” IEEE
Trans. on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 34, No. 1, February 2004,
pp. 539-557.

[CPPP-8] Yanfei Liu and K. M. Passino, “Cohesive Behaviors of Multiple Cooperative Mobile
Discrete-time Agents in a Noisy Environment,” Accepted by the 4th Annual International
Conference on Cooperative Control and Optimization, November 2003.

[CPPP-9] Yanfei Liu and K. M. Passino, “Stability Analysis of Swarms in a Noisy
Environment." Proc. of the 42nd IEEE Conference on Decision and Control, Maui, HI, December
9-12, 2003, pp. 3573-3578.

[CPPP-10] Yanfei Liu and K. M. Passino, “Stable Social Foraging Swarms in a Noisy
Environment,” IEEE Trans. on Automatic Control, Vol. 49, No. 1, January 2004, pp. 30-44.

[CPPP-11] Yanfei Liu and K. M. Passino, “Stability Analysis of Cohesion properties of
Cooperative Agents with Limited Sensor Capability,” Submitted for publication, 2004.

7.5 CPPS Publications

[CPPS-1] Y. Yang, A. A. Minai, and M. M. Polycarpou, "Decentralized Cooperative Search in
UAV's Using Cooperative Learning," Proc. of the 2002 AIAA Guidance, Navigation, and
Control Conference, Monterey, CA, August 2002.

[CPPS-2] M. Flint, M. Polycarpou, and E. Fernandez-Gaucherand, "Cooperative Control for
Multiple Autonomous UAV's Searching for Targets," Proc. of the 41st IEEE Conference on
Decision and Control, Las Vegas, NV, December 10-13, 2002, pp. 2823-2828.

[CPPS-3] Y. Yang, A. A. Minai, and M. M. Polycarpou, "Analysis of Opportunistic Method for
Cooperative Search by Mobile Agents," Proc. of the 41st IEEE Conference on Decision and
Control, Las Vegas, NV, December 10-13, 2002, pp. 576-577.

[CPPS-4] M. Flint, E. Fernandez-Gaucherand, M. Polycarpou, “Cooperative Control for UAV’s
Searching Risky Environment for Targets.” Proc. of the 42nd IEEE Conference on Decision and
Control, Maui, HI, December 9-12, 2003, pp. 3567-3572.

7.6 VIA Publications

[VIA-1] R. Penner and E. Steinmetz, “Automated Support for Human Mixed Initiative Decision
and Control,” Proc. of the 42nd IEEE Conference on Decision and Control, Maui, HI, December
9-12, 2003, pp. 3549-3554.

[VIA-2] R. Penner and E. Steinmetz, “Implementation of Automated Interaction Design with
Collaborative Models.” Interacting with Computers, Vol. 15, Issue 3, 2003, pp. 367-385.

[VIA-3] R. Penner and E. Steinmetz, “Automated Interaction Design for Command and Control
of Military Situations.” IUI ’04, Madeira, Funchal, Portugal, January 13-16, 2004, pp. 362-363.

